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Abstract

This paper gives a general coalgebraic account of temporal logics whose se-
mantics involves a notion of computation path. Examples of such logics
include the logic CTL* for transition systems and the logic PCTL for prob-
abilistic transition systems. Our path-based temporal logics are interpreted
over coalgebras of endofunctors obtained as the composition of a computa-
tion type (e.g. nondeterministic or stochastic) with a general transition type.
The semantics of such logics relies on the existence of execution maps similar
to the trace maps introduced by Jacobs and co-authors as part of the coal-
gebraic theory of finite traces [1]. We consider both finite execution maps
derived from the theory of finite traces, and a new notion of maximal execu-
tion map that accounts for maximal, possibly infinite executions. The latter
is needed to recover the logics CTL* and PCTL as specific path-based logics.

Keywords: coalgebra, trace semantics, computation path, temporal logic,
nondeterminism, probability

1. Introduction

Path-based temporal logics are commonly used as specification logics,
particularly in the context of automatic verification. Instances of such logics
include the logic CTL* with its fragments CTL and LTL for transition sys-
tems [2], and the logic PCTL for probabilistic transition systems [3]. In spite
of the similarities shared by these logics (most notably the use of a notion of
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computation path to define their semantics), no general, unified account of
path-based temporal logics exists.

Coalgebras are by now recognised as a truly general model of dynamical
systems, instances of which subsume transition systems, their probabilistic
counterparts, and many other interesting state-based models [4]. Moreover,
the modal logics associated with coalgebraic models [5, 6, 7] are natural
logics for specifying system behaviour, that also instantiate to familiar logics
in particular cases. Basic coalgebraic modal languages (as considered e.g. in
[5, 6]) employ modal operators whose semantics depends solely on the one-
step behaviour of system states. Adding fixpoint operators (with the usual
semantics) to such languages allows properties of the long-term, possibly
infinite behaviour of system states to also be formalised [7, 8]. However,
the use of fixpoint operators makes the formulation of application-relevant
temporal properties a non-trivial task (see Example 5.2 for an illustration of
this). In contrast, the syntax and semantics of temporal logics such as CTL*
and PCTL make direct reference to the computation paths associated to a
state in a model, thereby easing the task of formalising application-relevant
temporal properties. While the relationship between CTL* and the modal
µ-calculus [9] is well understood [10], that between PCTL and the fixpoint
extension of the basic modal language for probabilistic systems (as considered
e.g. in [8]) is not. In particular, it is unclear whether properties such as:
“the likelihood of a state property p holding eventually is greater than q”
can be formalised in the latter language (while this can easily be encoded in
PCTL). This leads to a more general question regarding the expressive power
of path-based temporal logics, and motivates the need to further investigate
such logics.

The present paper makes some initial steps towards a general coalgebraic
theory of path-based temporal logics: we introduce a generic syntactic for-
mat for such logics, together with a coalgebraic semantics defined in terms
of execution maps. Following [11, 1], we model systems as coalgebras of
a signature functor obtained as the composition of a computation type T
(called branching type in [1]) with a transition type F , and require that
T distributes over F in a suitable way. As examples, we consider nonde-
terministic and probabilistic systems, with the non-empty powerset functor
P+ : Set → Set on the category of sets and respectively the probability
measure functor G1 : Meas → Meas on the category of measurable spaces
describing the computation types needed to recover the usual notions of
computation path for such systems. While the transition type describes the
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structure of individual transitions (typically linear), the computation type
describes how the transitions from particular states are organised (e.g. using
sets, or probability distributions). Our semantics for path-based temporal
logics for T ◦ F -coalgebras relies on a notion of computation path (that is
parameterised by T and F ), and on the existence of so-called execution maps
taking states of T ◦ F -coalgebras to suitably-structured computation paths.
The notions of finite trace and finite trace map provided by the coalgebraic
theory of finite traces [1] can easily be adapted to provide notions of finite
computation path and finite execution map. However, while such notions
can be used to provide semantics for path-based coalgebraic temporal logics,
their use does not allow logics such as CTL* and PCTL, whose semantics in-
volves infinite computation paths, to be recovered as instances of the general
framework.

The first contribution of this paper is to define notions of maximal exe-
cution and maximal execution map for deterministic, non-deterministic and
stochastic computation types (and general transition types). In particular,
maximal execution maps arise as instances of maximal trace maps (which
we also define), by simply varying the transition type. Our use of the term
maximal (instead of infinite) reflects the observation that, for certain choices
of transition type, some of the possible maximal traces admit finite descrip-
tions (see e.g. Example 3.3). Our approach to defining maximal trace maps
is inspired by the work in [11], where infinite trace maps were defined for
coalgebras of type P ◦ F , with P : Set → Set the powerset functor and
F : Set → Set a polynomial functor. At the same time, our definitions and
results are not direct generalisations of those in [11] – the approach described
in this paper only applies to computation types given by affine monads, with
only the non-empty powerset monad P+ (and not the powerset monad itself)
falling in this category1. The difference between the two approaches is more
accurately summarised by the following points:

• When restricting to P ◦ F -coalgebras that are also P+ ◦ F -coalgebras
(that is, each state has at least one successor), the infinite trace maps
of [11] coincide with the maximal trace maps defined in this paper.
(The infinite trace maps of [11] assign an empty set of traces to states
of P ◦ F -coalgebras with no successors.)

1The study of arbitrary (non-affine) monads is left for future work.
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• Our results can be applied to arbitrary P ◦ F -coalgebras by regarding
them as P+ ◦ (1 +F )-coalgebras (where the coalgebra map takes states
with no successors to {ι1(∗)}). The resulting maximal trace maps differ
from the trace maps of [11] for the original P◦F -coalgebras in that they
also account for the maximal finite traces arising from the presence of
states with no successors (as discussed in Example 3.3).

The second contribution of this paper is the definition of path-based coal-
gebraic temporal logics. These are parameterised on:

• the choice of computation and transition types, as well as the notion
of execution map,

• a choice of basic modal operators (and associated one-step semantics)
for both the computation type and the transition type.

The syntax of such logics distinguishes between path and state formulas, with
the interpretation of the latter being defined in terms of execution maps. By
instantiating our approach, we recover known temporal logics and obtain new
variants of known logics. Specifically, taking T to be the non-empty powerset
monad P+ : Set → Set and F = Id : Set → Set sheds new light on the logic
CTL* [2]. Varying F to A × Id with A a set of labels yields an interesting
variant of CTL* interpreted over labelled transition systems. On the other
hand, taking T = G1 and F = Id allows us to recover the logic PCTL [3], as
well as to obtain a version of this logic interpreted over standard Borel spaces.
Specifically, the negation-free fragments of CTL* and PCTL are recovered
as path-based fixpoint logics (for P+- and respectively D-coalgebras, with
D : Set → Set the probability distribution monad), whereas the full logics
are obtained as fragments of path-based temporal logics with Until operators
(for the same functors). All of the above instantiations rely on the notion of
maximal execution introduced in this paper.

This paper is structured as follows. The remainder of this section gives
a brief overview of the logics CTL* and PCTL, our main examples. Sec-
tion 2 recalls some basic definitions and results required later in the paper,
as well as some details of the generic theory of finite traces [1]. Section 3
defines maximal traces and executions for deterministic, non-deterministic
and stochastic computation types. Section 4 defines the syntax and seman-
tics of general path-based coalgebraic logics, including fixpoint logics (with
no negation operator for either the path or the state formulas) and tempo-
ral logics with Until operators. A summary of the results and an outline of

4



future work are given in Section 5. This paper is an extended and revised
version of [12].

Transition systems and the logic CTL*. The semantics of CTL* [13] is based
upon the notion of computation path. Given a transition system with set of
states S and accessibility relation R ⊆ S×S, a computation path from a state
s0 ∈ S is an infinite sequence of states s0s1s2 . . . such that siRsi+1 for i ∈ ω.
The syntax of CTL* consists of path formulas ϕ, formalising properties of
computation paths, and state formulas Φ, formalising properties of states:

ϕ ::= Φ | ¬ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ

Φ ::= tt | p | ¬Φ | Φ ∧ Φ | Aϕ

The path formulas of CTL* employ the temporal operators X (in the neXt
state along the path) and U (Until operator). Additional temporal operators
F (at some Future state along the path) and G (Globally along the path) can
be defined by letting Fϕ ::= ttUϕ and Gϕ ::= ¬F¬ϕ. The state formulas of
CTL* use atomic propositions p (interpreted as subsets of the state space of
a transition system) to capture basic properties of states, and the operator A
to quantify universally over the computation paths from a particular state.
Existential quantification over paths is then captured by the derived operator
E, defined by Eϕ ::= ¬A¬ϕ. Every state formula is also a path formula,
with the latter requiring that the first state of a path satisfies the given
state formula. For example, the property “along every path, the system
will eventually reach a success state” is formalised as A(tt U success), where
tt denotes the true proposition and success is an atomic proposition. In
order to only focus on the infinite computation paths as defined above, an
assumption is made when interpreting CTL* on a transition system, namely
that each state has at least one outgoing transition2 (and hence, all maximal
paths through the transition system are infinite).

Probabilistic transition systems and the logic PCTL. In the probabilistic
transition system model, the state transitions are governed by a probabil-
ity distribution on the target states – this assigns a probability value to each
outgoing transition from a particular state, with the values for transitions

2For states where this is not the case, self-loops can be added to the original transition
system.
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from the same state summing up to 1. The logic PCTL [3] for probabilistic
transition systems is similar in spirit to CTL*, and employs the same notion
of computation path as that of CTL*. Its syntax consists of path formulas
ϕ and state formulas Φ, with operators X and U (now applied only to state
formulas) for the path formulas, and with state formulas [ϕ]≥q and [ϕ]>q
stating that the likelihood of a path formula ϕ holding along the paths from
a particular state is at least, respectively strictly greater than, q:

ϕ ::= XΦ | ΦUΦ

Φ ::= tt | p | ¬Φ | Φ ∧ Φ | [ϕ]≥q | [ϕ]>q

For example, [tt U success]≥1 states that the likelihood of eventually reaching
a success state is 1. To interpret the state formulas of PCTL on a probabilistic
transition system, one computes probability measures over the computation
paths from each state (see [3] for details).

The previous examples suggest that a general account of computation
paths (to be referred to as maximal executions in what follows) should first
define the shape of a maximal execution (in the previous examples, any infi-
nite sequence of states), and then provide a suitable structure on the maximal
executions (e.g. a subset of all possible executions, or a probability measure
over them), for each state of a particular model. The former should be suf-
ficient to allow an interpretation of path formulas (of a generic path-based
logic yet to be defined), whereas the latter should allow an interpretation of
state formulas (of the same logic).

Acknowledgement
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and its relevance to this work, and to the anonymous referees for their valu-
able comments and suggestions for improvement.

2. Preliminaries

We recall that a measurable space is given by a pair (X,ΣX) with X a
set and ΣX a σ-algebra of (measurable) subsets of X, whereas a measurable
map between (X,ΣX) and (Y,ΣY ) is given by a function f : X → Y with the
property that f−1(V ) ∈ ΣX for each V ∈ ΣY . We write Meas for the category
of measurable spaces and measurable maps. A measurable space (X,ΣX) is
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called discrete if ΣX = PX. A subprobability measure on a measurable
space (X,ΣX) is then a function µ : ΣX → [0, 1] such that µ(∅) = 0 and
µ(
⋃
i∈ωXi) =

∑
i µ(Xi) for countable families (Xi)i∈ω of pairwise-disjoint

measurable subsets of X. Thus, µ(X) ≤ 1 for any subprobability measure
µ on (X,ΣX). If µ(X) = 1, then µ is called a probability measure. Given
a measurable space (X,ΣX) and x ∈ X, the Dirac probability measure δx is
defined by δx(U) = 1 iff x ∈ U and δx(U) = 0 otherwise.

We write G : Meas → Meas for the subprobability measure functor [14],
sending a measurable space (X,ΣX) to the set M(X,ΣX) of subprobability
measures on (X,ΣX), equipped with the σ-algebra generated by the sets
{µ | µ(U) ≥ q} with U ∈ ΣX and q ∈ [0, 1]. A related functor, considered in
[1], is the subprobability distribution functor S : Set → Set, sending a set X
to the set of subprobability distributions over X, i.e. functions µ : X → [0, 1]
with

∑
x∈X µ(x) ≤ 13.

For technical reasons to be discussed later (see Section 3.4), we will work
in a full subcategory of Meas, namely the category SB of standard Borel spaces
– these are the measurable spaces whose measurable sets arise as the Borel
sets induced by a complete, separable metric (see [15] for further details).
A notable property of this subcategory is that it is closed under countable
coproducts and countable limits in Meas (see [16, Fact 1]).

Given a functor F : C→ C, an F -coalgebra is given by a pair (X, γ) with
X a C-object and γ : X → FX a C-map, while an F -coalgebra homomor-
phism from (X, γ) to (Y, δ) is given by a C-map f : X → Y additionally
satisfying Ff ◦ γ = δ ◦ f . As previously mentioned, we work in the setting
of coalgebras of endofunctors obtained as the composition of a computation
type with a transition type. The computation type is specified by a monad T
on a category C, whereas the transition type is captured by an endofunctor
F on C. As in [1], a crucial assumption is the existence of a distributive law
λ : F ◦ T ⇒ T ◦ F of T over F . Such a distributive law must be compatible
with the monad structure, i.e. λ◦Fη = ηF and λ◦Fµ = µF ◦Tλ◦λT , where
η : Id⇒ T and µ : T 2 ⇒ T denote the unit and multiplication of the monad
T .

As examples of computation types, we consider (variants of):

• the identity monad Id : Set → Set, modelling deterministic computa-

3Thus, a subprobability distribution can take non-zero values on at most countably-
many elements of X.
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tions, with unit and multiplication given by identities,

• the environment monad E := IdE : Set → Set with E a fixed set,
modelling deterministic computations with input, with unit ηX : X →
XE given by ηX(x)(e) = x, and multiplication µX : (XE)E → XE

given by µX(f)(e) = f(e, e),

• the powerset monad P : Set → Set, modelling nondeterministic com-
putations, with unit given by singletons and multiplication given by
unions,

• the subprobability measure monad G : Meas→ Meas, modelling proba-
bilistic computations, with unit given by the Dirac measures and mul-
tiplication given by integration (see [14] for details).

All of the above monads are strong and commutative, i.e. they come equipped
with a strength map stX,Y : X×TY → T (X×Y ) as well as a double strength
map dstX,Y : TX × TY → T (X × Y ), for each choice of C-objects X, Y 4:

• the identity monad has strength and double strength given by identities,

• the environment monad has strength given by

stX,Y (x, f)(e) = (x, f(e))

for x ∈ X, f ∈ Y E and e ∈ E, and double strength given by given by
the isomorphism XE × Y E ' (X × Y )E,

• the powerset monad has strength and double strength given by

stX,Y (x, V ) = {x} × V dstX,Y (U, V ) = U × V

for x ∈ X, U ∈ PX and V ∈ PY ,

• the subprobability measure monad has strength given by

st(X,ΣX),(Y,ΣY )(x, ν)(U × V ) =

{
ν(V ) if x ∈ U
0 otherwise

4Moreover, these are natural in X and Y .
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and double strength given by

dst(X,ΣX),(Y,ΣY )(µ, ν)(U × V ) = µ(U) · ν(V )

for x ∈ X, µ ∈ M(X,ΣX), ν ∈ M(Y,ΣY ), U ∈ ΣX and V ∈ ΣY .
(Note that the σ-algebra of the product (X,ΣX)× (Y,ΣY ) is generated
by the subsets U × V with U ∈ ΣX and V ∈ ΣY .)

A particular class of transition types, namely that of shapely polynomial
functors, is considered in [1].

Definition 1. Let C be a category with finite products and arbitrary co-
products. A functor F : C → C is a shapely polynomial functor if it is
built from identity and constant functors using finite products and arbitrary
coproducts.

[1, Lemma 2.3] shows that any commutative monad on Set has a canon-
ical distributive law over any shapely polynomial functor on Set. This im-
mediately provides examples of distributive laws of the powerset monad over
shapely polynomial functors on Set.

Example 1. For T = P and F = A × Id, the canonical distributive law of
T over F is defined from the canonical distributive laws of P over A and Id,
respectively, using the double strength of the monad P :

(A× Id) ◦ P = A× P ηA×idP +3 PA× P
dstA,Id +3 P ◦ (A× Id)

Here, the A-component of the unit of P gives the canonical distributive law
of P over A, while the identity natural transformation provides the canonical
distributive law of P over Id. Later in the paper, we will consider a submonad
of the powerset monad, namely the non-empty powerset monad P+ : Set→
Set. Its canonical distributive law over F is obtained in a similar way.

The construction of the canonical distributive law (by induction on the
structure of the shapely functor) generalises straightforwardly to any cat-
egory with finite products and arbitrary coproducts, thereby also provid-
ing examples of distributive laws of the subprobability measure monad over
shapely polynomial functors on Meas.

As in [1], the Kleisli category of a monad (T, η, µ) on a category C will
play an important rôle when defining notions of maximal trace and maximal
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execution for systems whose computation type is given by T . This category,
denoted Kl(T ), has the same objects as C, and maps from X to Y given by
C-maps f : X → TY . The composition of two Kl(T )-maps f : X → Y and
g : Y → Z is given by the C-map µZ ◦ Tg ◦ f : X → TZ.

We let K : Kl(T )→ C denote the functor defined by:

• KX = TX,

• Kf = µY ◦ Tf for f : X → Y in Kl(T ),

and write J : C→ Kl(T ) for its left adjoint, defined by:

• JX = X,

• Jf = Tf ◦ ηX = ηY ◦ f for f : X → Y in C.

Later we will make use of the following property of the functor J :

Lemma 1. If the functor T : C→ C (weakly) preserves the limit (Z, (πi)i∈ω)
of an ω

op
-chain (fi : Zi+1 → Zi)i∈ω

5, then so does J : C→ Kl(T ).

Proof. Assume first that T weakly preserves the limit (Z, (πi : Z → Zi)i∈ω)
of (fi : Zi+1 → Zi)i∈ω. To show that (JZ, (Jπi : JZ → JZi)i∈ω) is a weakly
limiting cone for (Jfi : JZi+1 → JZi)i∈ω in Kl(T ), let (X, (δi : X → JZi)i∈ω)
denote an arbitrary cone for (Jfi)i∈ω in Kl(T ). Hence, in C, µZi ◦ TηZi ◦
Tfi ◦ δi+1 = δi, that is, Tfi ◦ δi+1 = δi for all i ∈ ω. This makes (δi)i∈ω a
cone over (Tfi)i∈ω in C, and the weak limiting property of (TZ, (Tπi)i∈ω) in
C now yields a mediating map m : X → TZ such that Tπi ◦m = δi in C for
all i ∈ ω. This is equivalent to µZi ◦ TηZi ◦ Tπi ◦m = δi in C for i ∈ ω, that
is, Jπi ◦m = δi in Kl(T ) for i ∈ ω. The proof of the stronger statement, in
the case when T preserves the limit of (fi)i∈ω, is similar. �

Remark 1. The above result will later be instantiated with T = P+ : Set→
Set and T = G1 : SB → SB. While T = G1 preserves limits of ω

op
-chains,

T = P+ preserves such limits only weakly.

5T is said to weakly preserve the limit (Z, (πi : Z → Zi)i∈ω) of (fi : Zi+1 → Zi)i∈ω

if for any cone (X, (gi : X → Zi)i∈ω) over (Tfi)i∈ω in C, there exists a mediating map
g : X → TZ satisfying Tπi ◦ g = gi for i ∈ ω. If, for any such cone, the mediating map is
unique, then T preserves the limit in the standard sense.
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As mentioned above, we assume the existence of a distributive law λ of
the monad T over the endofunctor F . Such distributive laws are known to be
in one-to-one correspondence with liftings of the functor F : C→ C to Kl(T ),
i.e. with functors G : Kl(T ) → Kl(T ) satisfying G ◦ J = J ◦ F (see e.g. [1]).
The lifting F : Kl(T )→ Kl(T ) induced by a distributive law λ : F ◦T ⇒ T ◦F
is given by:

• FA = FA,

• Ff = λB ◦ Ff for f : A→ B in Kl(T ).

To see that the above defines a lifting of F to Kl(T ), note that, for f : X → Y
in C, the C-maps that define the Kleisli maps FJf and JFf are λY ◦FηY ◦Ff
and respectively ηFY ◦ Ff . By the compatibility of the distributive law λ
with the monad structure, these coincide.

Finite traces and executions

In [1], the authors consider coalgebras (X, γ) of endofunctors of the form
T ◦ F with the monad T : Set → Set and the endofunctor F : Set →
Set being related by a distributive law λ : F ◦ T ⇒ T ◦ F . Moreover the
Kleisli category of T is assumed to be DCpo⊥-enriched. That is, each homset
Kl(T )(X, Y ) is a partial order with bottom element, with directed collections
of maps (fi : X → Y )i∈I in Kl(T ) admitting a join

⊔
i∈I fi : X → Y , and

with composition preserving directed joins: g ◦ (
⊔
i∈I fi) =

⊔
i∈I(g ◦ fi) and

(
⊔
i∈I fi) ◦ h =

⊔
i∈I(fi ◦ h). In this setting, the elements of the carrier IF

of the initial F -algebra provide the potential finite traces of states of T ◦ F -
coalgebras6, and a finite trace map ftrγ : X → T (IF ) is defined via finality
in Kl(T ). The crucial observation is that the initial F -algebra in Set lifts
to a final F -coalgebra in Kl(T ) (where, as before, F : Kl(T ) → Kl(T ) is the
lifting of F to Kl(T ) induced by λ). Thus, the finite trace map arises as
the unique coalgebra morphism from the F -coalgebra in Kl(T ) induced by a
T ◦ F -coalgebra in Set to the final F -coalgebra.

A finite execution map for a T ◦ F -coalgebra (X, γ) is defined in [17],
as the finite trace map obtained by regarding (X, γ) as a T ◦ F ◦ (X × Id)-
coalgebra. Here we propose a variant of this notion obtained by replacing the

6The resulting notion of trace is referred to as fat trace in [17], as it retains the structure
specified by the transition type F and therefore may involve branching.
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functor F ◦ (X × Id) with the functor X × F . The reason for this variation
is that we expect finite executions to also record their initial states. This is
needed if finite execution maps are used to provide semantics to path-based
temporal logics (see Section 4). In order to view a T ◦F -coalgebra (X, γ) as
a T ◦(X×F )-coalgebra, we post-compose the map 〈idX , γ〉 : X → X×TFX
with the appropriate component stX,FX : X × TFX → T (X × FX) of the
strength of the monad T .

Definition 2. Let T : C → C be a strong monad, let F : C → C be an
endofunctor, and let λ : F ◦ T ⇒ T ◦ F be a distributive law of T over F .
Also, for a T ◦ F -coalgebra (X, γ), let FX : C→ C denote the functor taking
a C-object Y to X × FY , let (IX , ιX) denote an initial FX-algebra, and let
λX : FX ◦ T ⇒ T ◦ FX denote the natural transformation given by (λX)Y =
stX,FY ◦(idX×λY ). The finite execution map fexecγ : X → TIX is the C-map
underlying the unique FX-coalgebra morphism from (X, stX,FX ◦ 〈idX , γ〉) to
the final FX-coalgebra.

Example 2. Let T = P and F = 1+A× Id. In this case, the potential finite
traces are the elements of the initial F -algebra, that is, all finite sequences of
elements of A. Also, given a T ◦F -coalgebra (X, γ), the potential finite exe-
cutions are the elements of the initial FX-algebra, that is, all finite sequences
of the form s0a1s1a2s2 . . . sn, with n ∈ ω, si ∈ X for i ∈ {0, . . . , n} and ai ∈ A
for i ∈ {1, . . . , n}. We note that taking F = A × Id results in no possible
finite traces or executions, and consequently the finite trace/execution maps
will assign the empty set to any state of any T ◦ F -coalgebra.

Modal logics for coalgebras

Our path-based coalgebraic temporal logics will be based on the notion of
predicate lifting, as introduced by Pattinson [5]. However, the semantics of
these logics will differ somewhat from the standard semantics of coalgebraic
modal logics induced by predicate liftings, as defined e.g. in [5]. Also, the
notion of predicate lifting used here is slightly more general than the one of
[5], and applies to endofunctors on both Set and Meas.

We begin by fixing a category C with forgetful functor U : C→ Set, and
a contravariant functor P : C→ Set

op

such that P is a subfunctor of P̂ ◦U7,

7That is, for each C-object C, P (C) ⊆ P̂(UC), and for each C-arrow f : C → D, P (f)
is the restriction of P̂(Uf) to P (C).
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where P̂ : Set→ Set
op

denotes the contravariant powerset functor. For each
state space X, PX specifies a set of admissible predicates. As instances of
P we will consider the contravariant powerset functor P̂ : Set→ Set

op

in the
case when C = Set, and the functor taking a measurable space to the carrier
of its underlying σ-algebra in the case when C = Meas.

Given an endofunctor F : C→ C and n ∈ ω, an n-ary predicate lifting for
F is a natural transformation λ : P n ⇒ P ◦F . For simplicity of presentation,
we assume all predicate liftings to be unary, however, our results generalise
straightforwardly to predicate liftings with arbitrary finite arities. We briefly
recall the syntax and semantics of coalgebraic modal logics induced by pred-
icate liftings. Given a set Λ of predicate liftings for F , the modal language
LΛ has formulas given by the grammar:

LΛ 3 Φ ::= tt | ¬Φ | Φ ∧ Φ | [λ]Φ (λ ∈ Λ)

A coalgebraic semantics for this language is obtained by defining JΦKγ ⊆
PC for each F -coalgebra (C, γ), by structural induction on Φ ∈ LΛ. The
interesting case is J[λ]ΦKγ = (Pγ)(λC(JΦKγ)) for Φ ∈ LΛ and λ ∈ Λ. In
Section 4, we will see a novel use of modalities arising from predicate liftings,
namely to interpret state formulas in path-based temporal logics. There, we
will typically require our predicate liftings to be monotone8, in that A ⊆ B
implies λX(A) ⊆ λX(B) for all X and all A,B ∈ PX.

3. Maximal Traces and Executions

Some initial steps towards a general coalgebraic treatment of maximal
(possibly infinite) traces and executions were made in [11], where infinite
trace maps were defined for coalgebras of type P ◦ F , with F : Set → Set a
polynomial functor equipped with the canonical distributive law λ : F ◦P ⇒
P ◦ F . Specifically, it was observed in [11] that the final F -coalgebra in Set
(whose elements represent potential infinite traces) gives rise to a weakly
final F -coalgebra in Kl(P). Then, for a P ◦ F -coalgebra, a trace map was
obtained via weak finality, by regarding this coalgebra as an F -coalgebra in
Kl(P). A canonical choice for the trace map was then provided by the largest
mediating map. As mentioned earlier, our definition of maximal trace maps
will only subsume that of [11] when restricting to P+ ◦ F -coalgebras.

8Monotonicity in all arguments would be required in the case of predicate liftings with
arbitrary finite arities.
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Throughout this section, C denotes a category with countable limits, F :
C→ C is an endofunctor, T : C→ C is a strong monad, and λ : F ◦T ⇒ T ◦F
is a distributive law of T over F .

3.1. Maximal traces

As in [11], the final F -coalgebra provides the potential maximal traces of
states of T ◦ F -coalgebras. We work under the assumption that F preserves
the limit of the following ω

op
-chain

1 F1!oo F 21F !oo . . .
F 2!oo

with 1 a final object in C and ! : F1→ 1 the unique such map. In this case,
the carrier of a final F -coalgebra is obtained as the limit in C of the above
ω

op
-chain. We let (Z, ζ : Z → FZ) denote a final F -coalgebra, and write

πi : Z → F i1 with i ∈ ω for the corresponding projections.
We expect the maximal trace map for a coalgebra (X, γ) to be of the

form trγ : X → TZ. (For instance, when T = P , the maximal trace map
should assign to each state of the coalgebra, a set of maximal traces.) With
this in mind, we define an ω-indexed sequence of maps (γi : X → TF i1)i∈ω,
which we regard as finite approximations of the maximal trace map (following
the observation that the elements of F i1 provide finite approximations of
potential maximal traces):

• γ0 = η1◦!X : X → T1, where !X : X → 1 is the unique such map,

• γi+1 = µF i+11 ◦ TλF i1 ◦ TFγi ◦ γ : X → TF i+11 for i ∈ ω:

X
γ
// TFX

TFγi // TFTF i1
TλFi1 // T 2F i+11

µFi+11 // TF i+11

That is, the maps γi arise by unfolding the coalgebra structure i times, and
using the distributive law λ of T over F and the monad multiplication to dis-
card inner occurrences of T from the codomain of the maps γi. Alternatively,
the C-maps γi can be defined as maps in Kl(T ) by:

• γ0 = J !X ,

• γi+1 = Fγi ◦ γ for i ∈ ω.

14



Some additional constraints on the monad T are required for the maps (γi)i∈ω
to define a cone over the ω

op
-chain (F i!)i∈ω in C:

X

!X
��

γ
// TFX

TFγ0
��

TFγ1

&&

1

η1

��

TFT1

Tλ1
��

TFTF1

TλF1

��

. . .

T 2F1

µF1

��

T 2F 21

µF21

��

. . .

T1 TF1T !oo TF 21TF !oo . . .
TF 2!oo

Lemma 2. Let !TF1 : TF1→ 1 be the only such map. If η1◦!TF1 = T !, then
the previously-defined γis define a cone over (JF i!)i∈ω in Kl(T ).

Proof. The following sequence of equalities (in C) ensures γ0 = J ! ◦ γ1:

T ! ◦ γ1 = (definition of γ1)

T ! ◦ µF1 ◦ Tλ1 ◦ TFγ0 ◦ γ = (definition of γ0)

T ! ◦ µF1 ◦ Tλ1 ◦ TFη1 ◦ TF !X ◦ γ = (compatibility of λ with η, µ)

T ! ◦ TF !X ◦ γ = (hypothesis)

η1◦!TF1 ◦ TF !X ◦ γ = (uniqueness of C-maps to 1)

η1◦!X = (definition of γ0)

γ0

Now assuming γi = JF i!◦γi+1, we immediately obtain Fγi = FJF i!◦Fγi+1 =
JF i+1! ◦ Fγi+1, where the last equality follows by F being a lifting of F to
Kl(T ). Pre-composition with γ finally gives γi+1 = JF i+1! ◦ γi+2. �

We immediately observe that the hypothesis of the above result is not
satisfied by two of the monads identified earlier:

• for T = P , (η1◦!TF1)(∅) = 1 6= ∅ = (P !)(∅);

• for T = G, (η1◦!TF1)(ν0) = µ1 6= µ0 = (G!)(ν0), where ν0 is the sub-
probability measure on F (1,P1)9 which assigns the value 0 to each

9Note that (1,P1) is a final object in Meas.
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measurable set, whereas µ0 and µ1 are the subprobability measures on
(1,P1) given by µ0(1) = 0 and respectively µ1(1) = 1.

To remedy the situation, we will work with submonads of these two monads
for which the hypothesis of Lemma 2 is true. To this end, we first note
that if the monad T is such that η1 : 1 → T1 is an isomorphism, then the
equality required by Lemma 2 is obtained immediately by finality. Strong
monads with the above property are called affine, see e.g. [18] for an overview.
Moreover, [18] shows how to construct, for any strong monad T , its affine
submonad Ta, which is itself commutative whenever T is. Specifically, the
action of Ta on a C-object X is given by the following pullback diagram:

TaX
ιX //

!TaX
��

TX

T !X
��

1 η1
// T1

This construction yields:

• the non-empty powerset monad P+ : Set→ Set as the affine submonad
of P ,

• the probability measure monad G1 : Meas → Meas (with G1(X,ΣX)
containing only the probability measures on (X,ΣX)) as the affine sub-
monad of G,

• the identity monad as the affine submonad of the lift monad 1 + Id :
Set→ Set, as well as of the finite list and finite multiset monads (taking
a set X to the set of finite lists, respectively finite multisets, of elements
of X).

Also, it is an easy exercise to check that the identity and environment monads
are affine. Thus, for T = Id, T = E , T = P+ and T = G1, Lemma 2 applies.
We also observe that, in the case of P+ and G1, the canonical distributive
laws of the original monads (P , respectively G) restrict to distributive laws of
their affine submonads. This is a consequence of the following general result,
stating that any distributive law of a strong monad T over an endofunctor
F restricts to a distributive law of Ta over F .

Proposition 1. Let λ : F ◦ T ⇒ T ◦ F be a distributive law of T over F .
Then, λ restricts to a distributive law λ : F ◦ Ta ⇒ Ta ◦ F .
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Proof. Using that !F1 ◦ F !X =!FX (by finality of 1), the pullback diagram
defining TaFX can be written as

TaFX
ιFX //

��

TFX

TF !X
��

TF1

T !F1

��

1 η1
// T1

Next, note that the maps λX ◦ FιX : FTaX → TFX and !F1 ◦ F !TaX :
FTaX → 1 define a cone over the diagram given by T !F1 ◦ TF !X and η1:

T !F1 ◦ TF !X ◦ λX ◦ FιX = (naturality of λ)

T !F1 ◦ λ1 ◦ FT !X ◦ FιX = (definition of TaX)

T !F1 ◦ λ1 ◦ Fη1 ◦ F !TaX = (compatibility of λ with monad structure)

T !F1 ◦ ηF1 ◦ F !TaX = (naturality of η)

η1◦!F1 ◦ F !TaX

The definition of TaFX now yields a map (λa)X : FTaX → TaFX that
satisfies, in particular, ιFX ◦ (λa)X = λX ◦ FιX :

FTaX

(λa)X
��

FιX // FTX

λX
��

TaFX ιFX
// TFX

That is, λa agrees with λ on FTaX. The naturality of the resulting maps
and their compatibility with the monad structure follow easily by diagram
chasing. �

For our two examples (T = P+ and T = G1), assuming that F is a shapely
polynomial functor, one can simply work with the canonical distributive laws.
An easy induction proof shows that these coincide with the distributive laws
given by the previous result. However, Proposition 1 shows how to obtain
a distributive law of the affine submonad of a monad T over an arbitrary
endofunctor F from a distributive law λ : FT ⇒ TF .
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We now return to the definition of the maximal trace map. For this,
we assume that the monad T is affine10, and moreover, that T preserves
the limit (Z, (πi)i∈ω) of an ω

op
-chain (F i! : F i+11 → F i1)i∈ω (and therefore,

by Lemma 1, so does J). Since we view the maps γi : X → T i1 (with
i ∈ ω) induced by a T ◦F -coalgebra (X, γ) as providing finite approximations
of the maximal trace map, it is natural to define the maximal trace map
trγ : X → TZ by exploiting the preservation by J of the limit (Z, (πi)i∈ω) of
(F i!)i∈ω.

Definition 3. Assume that the monad T is affine, and that the functors F
and J preserve the limit (Z, (πi)i∈ω) of the ω

op
-chain (F i!)i∈ω. For a T ◦ F -

coalgebra (X, γ), let (X, (γi : X → JF i1)i∈ω) be the induced cone over
(JF i!)i∈ω. The maximal trace map of (X, γ) is the unique mediating map
trγ : X → JZ arising from the limiting property of (JZ, (Jπi)i∈ω) (regarded
as a map in C).

In particular, Definition 3 applies to the identity and environment monads,
as well as to the probability measure monad. It does not, however, apply
to the non-empty powerset monad, since in this case the functor J does not
preserve the limit of (F i!)i∈ω. In Section 3.3, we will show that J weakly
preserves this limit, which guarantees the existence (but not the uniqueness)
of a maximal trace map. A canonical choice for the maximal trace map
will be shown to exist in this case. The case T = G1 will be considered in
Section 3.4.

We conclude this section by proving some properties of the maximal trace
map, similar to the defining properties of the trace map in [11].

Proposition 2. Under the assumptions of Definition 3, the maximal trace
map trγ : X → JZ defines an F -coalgebra morphism, that is, F trγ ◦ γ =
Jζ ◦ trγ.

Proof. We begin by noting that the final F -coalgebra ζ : Z → FZ satisfies
Fπi◦ζ = πi+1 for i ∈ ω; hence, in Kl(T ) we have JFπi◦Jζ = Jπi+1 for i ∈ ω.
Also, the preservation by F of the limit (Z, (πi)i∈ω) of (F i!)i∈ω results in the
cone (FZ, (Fπi)i∈ω) over (F i+1!)i∈ω being a limiting one which, moreover, is
isomorphic to the limiting cone (Z, (πi+1)i∈ω) over the same ω

op
-chain. Since

10A treatment of monads that are not affine is outside the scope of this paper.
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J preserves the limit of the latter, it also preserves the limit of the former.
That is, (JFZ, (JFπi)i∈ω) is a limit of (JF i+1!)i∈ω.

X
trγ

//

γi+1
##

JZ
Jζ

//

Jπi+1

��

JFZ

JFπi
zz

JF i+11

The conclusion then follows by showing that both F trγ ◦γ and Jζ ◦ trγ define
mediating maps for the cone (X, (γi+1)i∈ω) over (JF i+1!)i∈ω. On the one
hand, we have:

JFπi ◦ F trγ ◦ γ = (definition of F )

FJπi ◦ F trγ ◦ γ = (definition of trγ)

Fγi ◦ γ = (definition of γi+1)

γi+1

On the other hand, we have:

JFπi ◦ Jζ ◦ trγ = Jπi+1 ◦ trγ = γi+1

Uniqueness of mediating maps for the cone (X, (γi+1)i∈ω) over (JF i+1!)i∈ω
now gives F trγ ◦ γ = Jζ ◦ trγ, that is, trγ is an F -coalgebra morphism. �

3.2. Maximal executions

To obtain a notion of maximal execution of a state in a T ◦ F -coalgebra,
we use the approach in the previous section with a different choice of functor
F . Similarly to Definition 2, for a T ◦ F -coalgebra (X, γ), we consider the
endofunctor FX : C→ C given by FX(Y ) = X×FY and the distributive law
λX : FX ◦ T ⇒ T ◦ FX given by (λX)Y = stX,FY ◦ (idX × λY ). This choice
of endofunctor captures the intuition that, in addition to the information
provided by a maximal trace, a maximal execution also records the states
visited during a particular computation, including the initial state of that
computation; hence, the first component of the functor FX is the state space
itself. We assume that FX preserves the limit of the initial ω

op
-segment of

its final sequence, and call an element of the carrier of the final FX-coalgebra
(ZX , ζX) (obtained as the limit of the previous ω

op
-sequence) a potential

maximal execution, or computation path.
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Definition 4. Let (X, γ) be a T ◦ F -coalgebra. Assume that the monad
T is affine, and that the functors FX and J preserve the limit (ZX , (πi)i∈ω)
of the ω

op
-chain (FX

i!)i∈ω. Let (X, (γi : X → JFX
i1)i∈ω) be the cone over

(JFX
i!)i∈ω induced by the T ◦FX-coalgebra (X, stX,FX ◦ 〈idX , γ〉). The max-

imal execution map execγ : X → JZX of (X, γ) is the maximal trace map of
the T ◦ FX-coalgebra (X, stX,FX ◦ 〈idX , γ〉).

Definition 4 yields maximal execution maps for both deterministic systems
(with or without input) and probabilistic systems. The next section shows
how maximal execution maps can be defined for non-deterministic systems.

3.3. Nondeterministic systems

Definitions 3 and 4 do not apply to coalgebras of type P+ ◦ F , as the
functor J : Set → Kl(P+) does not preserve limits of ω

op
-chains. Crucially,

J does not preserve the limit of (F i!)i∈ω. In this section we show that P+

(and hence, by Lemma 1, also J) weakly preserves limits of ω
op

-chains, and
show how to use this property to define maximal trace and execution maps
for P+ ◦ F -coalgebras. As examples, we consider transition systems, both
unlabelled and labelled – these are obtained by taking F = Id and respectively
F = A × Id with A a set of labels. We note that our use of the non-empty
powerset monad agrees with the standard constraint placed on transition
systems when defining the notion of computation path.

Remark 2. To see that P+ does not preserve limits of ω
op

-chains, consider
the final sequence (fi : Zi+1 → Zi)i∈ω of the endofunctor 1 + A × Id, with
Zi =

⋃
0≤j≤iA

i, and with limit object Z = A∗ ∪ Aω. Now define a cone
(γi : 1→ P+Zi)i∈ω by letting γi(∗) consist only of the i-long sequence of a’s,
for some fixed a ∈ A. Then, both m(∗) = {a}∗ and m′(∗) = {a}∗ ∪ {a}ω
define mediating maps. (A similar example is discussed in [1, Section 4.2].)

Our definitions of maximal trace and execution maps for non-deterministic
systems will make use of the following result.

Lemma 3. The non-empty powerset functor P+ : Set → Set weakly pre-
serves limits of ω

op
-chains. Moreover, the set of mediating maps for the

image under P+ of a limiting cone over an ω
op

-chain has a maximal element
(under the point-wise inclusion order).
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Proof. Let (Z, (πi : Z → Zi)i∈ω) denote the limit of an ω
op

-chain (fi :
Zi+1 → Zi)i∈ω, let (γi : X → P+Zi)i∈ω denote a cone over (P+fi)i∈ω, and
assume X 6= ∅. (If X = ∅, the existence of a mediating map is trivial.) Now
define m : X → P+Z by

m(x) = {z ∈ Z | πi(z) ∈ γi(x) for all i ∈ ω}

for x ∈ X. To show that m(x) 6= ∅, observe that by using the axiom of
choice one can construct a sequence (zi)i∈ω with zi ∈ γi(x) and fi(zi+1) = zi
for i ∈ ω – first choose z0 ∈ γ0(x), then for i ∈ ω choose zi+1 ∈ γi+1(x)
satisfying fi(zi+1) = zi, by using (P+fi)(γi+1(x)) = γi(x). The limiting
property of Z then yields z ∈ Z with πi(z) = zi ∈ γi(x) for i ∈ ω, and
thus m(x) 6= ∅. It then follows using a similar line of reasoning that m is
a mediating map for the cone (X, (γi)i∈ω). Moreover, it is clear that m is
above any other mediating map (under the point-wise inclusion order). This
concludes the proof. �

Using Lemma 3, notions of maximal trace and maximal execution maps
for P+◦F -coalgebras can be defined by replacing mediating maps with largest
mediating maps in Definitions 3 and 4.

Definition 5. Let (X, γ) be a P+ ◦ F -coalgebra, let (γi)i∈ω be the induced
cone over the ω

op
-chain (F i! : F i+11 → F i1)i∈ω, and let (Z, (πi)i∈ω) denote

a limiting cone for this ω
op

-chain. The trace map trγ : X → JZ of (X, γ) is
given by the function:

trγ(x) = {z ∈ Z | πi(z) ∈ γi(x) for all i ∈ ω}

The execution map execγ : X → JZX of (X, γ) is the trace map of the
P+ ◦ FX-coalgebra (X, stX,FX ◦ 〈idX , γ〉), with ZX the carrier of a final FX-
coalgebra.

The next example describes the resulting maximal traces and executions, as
well as the trace and execution maps, for some specific choices of F .

Example 3. 1. For unlabelled transition systems subject to the require-
ment that every state has at least one successor (F = Id), the maximal
traces are trivial (as the final F -coalgebra has a singleton as carrier),
whereas the maximal executions are exactly the computation paths,
as considered in the semantics of CTL*. The maximal execution map
assigns to each state of a P+-coalgebra the computation paths from
that state.
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2. For labelled transition systems subject to a similar restriction (F =
A × Id), the maximal execution map gives, for each state s, the set of
labelled computation paths from s, as infinite sequences of the form

s = s0a1s1a2s2 . . . with si
ai // si+1 for i ∈ ω, whereas the maximal

trace map gives the sequences of labels that occur along such labelled
computation paths.

3. One can also vary the functor F in order to model explicit termination.
This is achieved by taking F = 1 + Id or F = 1 + A× Id as in [1], and
can be used to remove the requirement of at least one successor for each
state. (Note that an arbitrary transition system can be regarded as a
P+ ◦ (1 + Id)-coalgebra, where the coalgebra map takes states with no
successors to {ι1(∗)}.) In these cases, the maximal trace (execution)
maps incorporate both finite and infinite traces (respectively execu-
tions). To illustrate this, we briefly compare the infinite trace maps of
P ◦(A× Id)-coalgebras, as defined in [11], with the maximal trace maps
obtained by regarding such coalgebras as P+ ◦ (1 +A× Id)-coalgebras.
Consider the labelled transition system with state space {x, y} and a

single transition x a // y . When regarding this as a P ◦ (A × Id)-
coalgebra (where the coalgebra map sends x to {(a, y)} and y to ∅),
the infinite trace map of [11] assigns an empty set of traces to x, as
there are no infinite traces (i.e. elements of Aω, the final coalgebra of
A× Id) for x. On the other hand, when regarding the same transition
system as the P+ ◦ (1 +A× Id)-coalgebra with carrier {x, y} and coal-
gebra map given by x 7→ {ι2(a, y)} and y 7→ {ι1(∗)}, the maximal trace
map defined here assigns the maximal trace a (element of A∗ ∪Aω, the
final coalgebra of 1 + A× Id) to x.

We also note that Proposition 2 does not extend to the case when T = P+ –
its proof makes use of the preservation by J of the limit of the final sequence
of F . However, a weaker statement can be proved in this case.

Proposition 3. For T = P+, the maximal trace map trγ : X → JZ satis-
fies:

F trγ ◦ γ ⊆ Jζ ◦ trγ.

Proof. Similarly to the proof of Proposition 2, but using the weak preser-
vation of limits of ω

op
-chains by P+ together with Lemma 1, it follows that
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(JFZ, (JFπi)i∈ω) is a weak limit of (JF i+1!)i∈ω. (The same notation as in
Proposition 2 is used here.) We now write ζ−1 for the inverse of the iso-
morphism ζ : Z → FZ, and show that Jζ ◦ trγ : X → JFZ is the largest
mediating map for the cone (X, (γi+1)i∈ω) over the ω

op
-chain (JF i+1!)i∈ω:

(Jζ ◦ trγ)(x) =

{ζ(z) | z ∈ Z, πi(z) ∈ γi(x) for i ∈ ω} =

{ζ(z) | z ∈ Z, πi+1(z) ∈ γi+1(x) for i ∈ ω} =

{ζ(ζ−1(w)) | w ∈ FZ, πi+1(ζ−1(w)) ∈ γi+1(x) for i ∈ ω} =

{w | w ∈ FZ, (Fπi)(w) ∈ γi+1(x) for i ∈ ω}

The conclusion then follows after observing that, as in the proof of Proposi-
tion 2, F trγ ◦ γ is a mediating map for (X, (γi+1)i∈ω). �

Remark 3. The statement of Proposition 3 is weaker than the defining prop-
erty of trace maps in [11], with the latter requiring an F -coalgebra morphism.
We are not aware of any instances of F and λ for which the trace map is not
an F -coalgebra morphism. We conjecture that an additional assumption on
the endofunctor F (possibly involving a continuity condition) would be re-
quired to strengthen the above result, and leave the study of such a condition
for future work.

We conclude this section by noting that our approach does not directly
apply to the case T = P+

ω , with P+
ω : Set → Set the non-empty, finite pow-

erset functor, as this functor does not weakly preserve limits of ω
op

-chains.
This is to be expected, since states of P+

ω -coalgebras will, in general, have
an infinite number of traces. Notions of maximal trace map and maximal
execution map for finitely-branching transition systems are simply obtained
by regarding these as transition systems with no cardinality restrictions on
the branching.

3.4. Probabilistic systems

A large variety of discrete probabilistic models have been studied, see
e.g. [19] for a coalgebraic account. Among these, probabilistic transition sys-
tems (also called Markov chains when restricting to countable state spaces)
appear as coalgebras of the endofunctor D = D ◦ Id and are used to inter-
pret the logic PCTL [3], while generative probabilistic systems coincide with
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D ◦ (A × Id)-coalgebras. Here, D : Set → Set denotes the probability distri-
bution monad, a submonad of the subprobability distribution monad defined
on objects by DX = {µ ∈ SX |

∑
x∈X µ(x) = 1}.

We begin by observing that, although affine, the monad D does not satisfy
the requirement of Definition 3 concerning the preservation of limits by the
induced functor J . To see this, let F : Set → Set be given by FX =
{a, b} ×X, let (Z, (πi)i∈ω) denote the limit of the ω

op
-chain (F i!)i∈ω, and let

µi ∈ DF i1 be given by µi(x) = 1
2i

for x ∈ {a, b}i, with i ∈ ω. Thus, each µi
defines a finite probability distribution over F i1, and we have (Di!)(µi+1) =
µi for i ∈ ω. However, there is no probability distribution µ on Z (note that
Z ' {a, b}ω is uncountable) such that (Dπi)(µ) = µi for i ∈ ω – any such µ
could only take non-zero values on countably-many elements of Z. Indeed,
a state of a D ◦ F -coalgebra will in general have uncountably many infinite
traces, and the emphasis when defining a maximal trace map should be on
measuring sets of traces rather than individual traces.

A satisfactory treatment of maximal traces for discrete probabilistic mod-
els turns out to be possible by regarding such models as coalgebras of the
probability measure monad G1. Given a D ◦ F -coalgebra γ on Set, with
F : Set → Set a shapely polynomial functor, our approach will be to lift
F to a functor F̂ : Meas → Meas and regard γ as a G1 ◦ F̂ -coalgebra to
which Definitions 3 and 4 apply. In fact, we will show more generally that
Definitions 3 and 4 yield maximal trace and execution maps for coalgebras
of a certain class of endofunctors on the full subcategory SB of Meas.

To this end, we let F : Meas→ Meas denote a shapely polynomial functor,
and recall that Definitions 3 and 4 require the functor J : Meas→ Kl(G1) to
preserve the limits of the initial ω

op
-segments of the final sequences of F and

F(X,Σ) (with (X,Σ) the carrier of some G1 ◦ F -coalgebra). By Lemma 1, for
this it would suffice that the functor G1 : Meas → Meas preserves the same
limits. Unfortunately, G1 : Meas→ Meas does not preserve ω

op
-limits (see [20,

Section 3.3]), however, its restriction to the category of standard Borel spaces
does (see [20, Corollary 3.1]). For this reason, our treatment of probabilistic
systems will restrict attention to the subcategory SB of Meas11. We show next
that, under some additional constraints on the shapely polynomial functor
F : Meas → Meas, F restricts to the category SB and preserves the initial

11Note that the monads G : Meas→ Meas and G1 : Meas→ Meas restrict to monads on
SB, which by abuse of notation we also denote G and G1, respectively.
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ω
op

-segment of its final sequence. Moreover, the same holds for the functor
F(X,Σ), with (X,Σ) is a standard Borel space.

We recall from [16, Fact 1] that the category SB is closed under countable
coproducts and countable limits. This ensures the correctness of the following
definition.

Definition 6. A functor F : SB → SB is a restricted shapely polynomial
functor if it is built from identity and constant functors using finite products
and countable coproducts.

That is, restricted shapely polynomial functors are the shapely polynomial
functors on SB whose definition only involves countable coproducts.

[16, Fact 1] also results in SB being closed under limits of ω
op

-chains.
The next two lemmas ensure that the previously-mentioned hypotheses of
Definitions 3 and 4 are satisfied by the functors J , F and F(X,Σ).

Lemma 4 ([20, Corollary 3.1]). The functor G1 : SB → SB preserves
limits of ω

op
-chains.

Hence, by Lemma 1, J : SB→ Kl(G1) also preserves limits of ω
op

-chains.

Lemma 5. Restricted shapely polynomial functors preserve limits of ω
op

-
chains in SB.

Proof. The statement follows by induction on the structure of restricted
shapely polynomial functors. For constant and identity functors, the claim
is immediate. Now assume that Fi : SB → SB preserves the limit of an
ω

op
-chain in SB, for i ∈ ω. Preservation of the same limit by F1 × F2 is

straightforward (as limits commute with limits in any category), while its
preservation by

∐
i∈ω

Fi is a consequence of limits of ω
op

-chains commuting

with coproducts in Set, and of the fact that all bijective SB-morphisms are
isomorphisms (see [16, Fact 2 and proof of Proposition 3] for more details).

�

Remark 4. As a consequence of the above, for every restricted shapely poly-
nomial functor F : SB→ SB, the limit of the initial ω

op
-segment of F is the

carrier of a final F -coalgebra. Moreover, this also applies to the functor
F(X,Σ) : SB→ SB defined by F(X,Σ)(Y,Σ

′) = (X,Σ)× F (Y,Σ′).
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We also recall from Section 2 that commutative monads on any category
with products and coproducts admit canonical distributive laws over shapely
polynomial functors. This applies in particular to the monad G1 : SB → SB
and any restricted shapely polynomial functor. With this, we can conclude
that all the requirements of Definitions 3 and 4 are satisfied by the monad
G1 : SB → SB and the restricted shapely polynomial functors F : SB → SB
and F(X,Σ) : SB → SB, respectively. This yields notions of maximal trace
map and maximal execution map for G1 ◦ F -coalgebras over SB. At the
same time, we note that these definitions can be applied to any endofunctor
F : SB → SB which preserves the initial ω

op
-segment of its final sequence.

Our focusing on restricted shapely polynomial endofunctors was driven by
the need to consider D◦F -coalgebras over Set, with F : Set→ Set a shapely
polynomial functor.

We now return to such D ◦ F -coalgebras. In order to lift F to a functor
F̂ : SB→ SB, some additional constraints on the shape of F are required.

Definition 7. A shapely polynomial functor F : Set → Set is a restricted
shapely polynomial functor if it is built from identity and countable constant
functors using finite products and countable coproducts.

Definition 8. Given a restricted shapely polynomial functor F : Set→ Set,
its lifting F̂ : SB → SB to standard Borel spaces is defined by structural
induction on F :

• Îd is the identity functor on SB,

• ĈX is the constant functor C(X,PX), for each countable set X,

• F̂1 × F2 = F̂1 × F̂2,

•
∐̂

i∈ω Fi =
∐

i∈ω F̂i.

The correctness of the above definition is guaranteed by the observations
that a discrete measurable space (X,PX) is standard Borel if and only if X
is countable, and that SB is closed under countable products and coproducts
in Meas (see [16, Fact 1]). It then follows immediately that F̂ : SB → SB is
a restricted shapely polynomial functor. Moreover, the following hold:

Lemma 6. 1. The sets underlying the measurable spaces F̂1 × F2(X,ΣX)

and
∐̂

i∈ω Fi(X,ΣX) are given by (F1 × F2)X and
∐

i∈ω Fi(X), respec-
tively.
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2. The functor F̂ : SB→ SB preserves discrete spaces.

Proof. We begin by recalling that (finite) products and (countable) co-
products in Meas are constructed by putting a suitable σ-algebra structure
on the product, respectively coproduct of the underlying sets. Specifically,
the σ-algebra on the product is generated by the cartesian products of mea-
surable sets, whereas the σ-algebra on the coproduct is generated by the
disjoint unions of measurable sets in each of the summands [20, Section 3.1].
The first statement now follows immediately, whereas the second statement
follows by induction on the structure of F . �

We now show how to view a D ◦ F -coalgebra with countable carrier as a
G1 ◦ F̂ -coalgebra. The restriction to countable carriers is required to stay
within SB.

Proposition 4. Let F : Set → Set be a restricted shapely polynomial func-
tor, let (X, γ) be a D◦F -coalgebra with countable carrier, and let ((X,PX), γ̂)

be the G1◦F̂ -coalgebra whose structure map γ̂ takes x ∈ X to the unique prob-
ability measure on F̂ (X,PX) induced by the probability distribution γ(x) on
FX 12.Then, the cones13 (γi : X → JF i1)i∈ω over (JF i!)i∈ω induced by γ:

X

γ0

��
γ1

""
γ2

))

J1 JF1
J !
oo JF 21

JF !
oo . . .

JF 2!
oo

and (γ̂i : (X,PX)→ J ′F̂ i(1,P1))i∈ω over (J ′F̂ i!)i∈ω induced by ((X,PX), γ̂):

(X,PX)

γ̂0
��

γ̂1 && γ̂2
++

J ′(1,P1) J ′F̂ (1,P1)
J ′!
oo J ′F̂ 2(1,P1)

J ′F̂ !

oo . . .
J ′F̂ 2!

oo

12Note that, by Lemma 6.2, we have F̂ (X,PX) = (FX,PFX).
13Recall that the monads D and G1 are affine, and hence Lemma 2 applies.
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are such that γ̂i : (X,PX) → J ′F̂ i(1,P1) is the point-wise extension of
γi : X → JF i1 to a probability measure, for i ∈ ω. (Here, the functors
J : Set → Kl(D) and J ′ : SB → Kl(G1) are as in Section 2, and the cones
(γi)i∈ω and (γ̂i)i∈ω are constructed as in Section 3.1.)

Proof. We first note that the measurability of γ̂ is an immediate conse-
quence of (X,PX) being discrete. An easy induction proof then shows that,

for i ∈ ω and x ∈ X, γ̂i(x) is the unique probability measure on F̂ i(1,P1)
induced by the probability distribution γi(x) on F i1. �

As (1,P1) is final in Meas, the cone γ̂i is over the image under J ′ of

the initial ω
op

-segment of the final sequence of F̂ . As a result, we can use
the existence of trace maps of G1 ◦ F̂ -coalgebras to define trace maps for
D ◦ F -coalgebras. Before doing so, we observe that the underlying functions
defining the canonical distributive law of G1 over F̂ agree with the functions
defining the canonical distributive law of D over F .

Proposition 5. Let U : SB → Set denote the functor taking a standard
Borel space to its underlying set, let F : Set→ Set denote a restricted shapely
polynomial functor, and let λ : FD ⇒ DF and λ̂ : F̂G1 ⇒ G1F̂ denote the
canonical natural transformations of D over F and of G1 over F̂ , respectively.
Then, the following diagram commutes:

FDU
Fι

��

λU +3 DFU

FUG1 DUF̂
ι
F̂

��

UF̂G1
Uλ̂

+3 UG1F̂

where the (X,ΣX)-component of the natural transformation ι : DU ⇒ UG1

takes a probability distribution µ ∈ DX to the unique probability measure on
(X,ΣX) induced by µ.

Proof. The statement follows by induction on the structure of F , using
Lemma 6.1. �
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We are now in a position to define probabilistic trace and execution maps
for D ◦ F -coalgebras (X, γ) with countable carriers. To this end, we write

(Z,ΣZ) for the carrier of a final F̂ -coalgebra, and (ZX ,ΣZX ) for the carrier

of a final F̂(X,PX)-coalgebra. We recall that ω
op

-limits in Meas, and hence
(as SB is closed under countable limits) also in SB, are constructed from
the limits of the underlying diagrams in Set (see e.g. [20, Section 3.3] for
details). As a result, the state set of the coalgebra (Z,ΣZ) is the carrier of
a final F -coalgebra, whereas the σ-algebra ΣZ is generated by the inverse
images of measurable sets in F̂ i(1,P1) (i.e. subsets of F i1) under the maps
πi : Z → F i1, for i ∈ ω. In particular, the inverse images of singletons
{fi} ⊆ F i1 yield measurable subsets of Z; that is, the set of maximal traces
that have the same finite prefix fi is measurable. Similarly, ZX is the carrier
of a final FX-coalgebra, and the set of maximal executions with the same
finite prefix ei ∈ (FX)i1 is measurable.

Definition 9. Let F : Set→ Set be a restricted shapely polynomial functor,
and let (X, γ) be a D ◦F -coalgebra with countable carrier. The probabilistic
trace map of (X, γ) is the underlying function of the maximal trace map trγ̂ :

(X,PX)→ J ′(Z,ΣZ) of the G1 ◦ F̂ -coalgebra ((X,PX), γ̂) of Proposition 4.
The probabilistic execution map of (X, γ) is the probabilistic trace map of

the G1 ◦ F̂(X,PX)-coalgebra ((X,PX), st(X,PX),F̂ (X,PX) ◦ 〈id(X,PX), γ̂〉).

The above definition assumes that the canonical distributive law of G1 over
F̂ is considered when defining maximal trace maps in the category SB.

As expected, the probabilistic trace map yields, for each state of a D◦F -
coalgebra, a probability measure over (Z,ΣZ), while the probabilistic ex-
ecution map of (X, γ) yields, for each state, a probability measure over
(ZX ,ΣZX ).

Example 4. In the case of Markov chains (F = Id), the probabilistic execu-
tion map gives, for each state in a Markov chain, a probability measure over
its computation paths. In particular, for each finite prefix x0 . . . xi ∈ FXi1,
such a probability measure assigns a probability value to the set of com-
putation paths that extend x0 . . . xi. Similarly, in the case of generative
probabilistic systems (F = A× Id), the probabilistic execution map gives, for
each state, a probability measure over its labelled computation paths. As in
the case of nondeterministic systems, explicit termination can be modelled
by taking F = 1 + Id or F = 1 + A × Id, with the probabilistic execution
maps now also incorporating finite (labelled) computation paths.
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4. Path-Based Coalgebraic Temporal Logics

We now introduce coalgebraic temporal logics in the style of CTL*, whose
semantics is defined in terms of execution maps. Throughout this section,
we fix a monad T : C→ C, an endofunctor F : C→ C and a T ◦F -coalgebra
(X, γ). We let execγ : X → TZX denote the maximal execution map given
by Definition 4, with (ZX , ζX) a final FX-coalgebra.

At the same time, we note that the temporal languages defined in this
section can also be interpreted by using the finite execution map fexecγ :
X → TIX with (IX , ιX) an initial FX-algebra, as given by Definition 2,
instead of the maximal execution map – the forthcoming definitions do not
rely on the finality of (ZX , ζX). However, this is only useful when F0 6= 0,
with 0 an initial object in C, as otherwise the initial FX-algebra is trivial. In
particular, modelling explicit termination via functors such as F = 1 + Id or
F = 1+A×Id yields non-trivial finite execution maps to which the definitions
in this section can be applied.

The temporal logics that we define are parameterised by sets ΛF and Λ
of monotone14 predicate liftings for the functors F and respectively T . The
category C will be instantiated to Set as well as to the full subcategory SB
of Meas.

We recall that the definition of predicate liftings requires functors U : C→
Set and P : C → Set

op

such that P is a subfunctor of P̂ ◦ U . In addition,
defining the semantics of path-based fixpoint logics will require that, for each
C-object X, both (PX,⊆) and (PX,⊇) are directed complete partial orders.
This will allow us to make use of the following result.

Lemma 7 ([21, Theorem 8.22]). Let P be a directed complete partial or-
der and let O : P → P be order-preserving. Then, O has a least fixpoint.

Since an ordered set is a directed complete partial order if and only if each
chain has a least upper bound (see e.g. [21, Theorem 8.11]), the hypothesis
of the previous result is satisfied by (PX,⊆) as well as by (PX,⊇), both for
P = P̂ : Set→ Set and for P : Meas→ Set taking a measurable space to its
σ-algebra.

14The restriction to monotone predicate liftings is only required to define the path-
based fixpoint logics of Section 4.1, and not also the path-based temporal logics with
Until operators of Section 4.2. For the latter, no appeal to fixpoint existence theorems is
needed.
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4.1. Path-based fixpoint logics

We now proceed to define path-based coalgebraic fixpoint logics. Like
CTL*, these logics are two-sorted, with path formulas denoted by ϕ, ψ, . . .
expressing properties of executions, and state formulas denoted by Φ,Ψ, . . .
expressing properties of states of T ◦ F -coalgebras.

To motivate the syntax of these logics, we recall that:

• the execution map execγ provides, for each state x ∈ UX of a T ◦ F -
coalgebra (X, γ), an element of UTZX , that is, a T -structured obser-
vation on the possible executions,

• the coalgebra structure ζX : ZX → X × FZX provides, for each ex-
ecution z ∈ UZX , its first state, U(π1 ◦ ζX)(z) ∈ UX, as well as an
F -structured observation U(π2 ◦ ζX)(z) ∈ UFZX .

Thus, it seems natural to use:

• one-step modal operators inspecting the T -structured observations on
the possible executions (provided by the map execγ), to define state
formulas,

• one-step modal operators inspecting the F -structure of executions (de-
fined by π2 ◦ ζX), to define path formulas.

At the same time, the C-map U(π1 ◦ ζX) allows a property of a state to be
regarded as a property of (the first state of) an execution. These observations
justify the following definition of a 2-sorted, path-based temporal language.

Definition 10. The language µL ::= µLΛF
Λ (U ,V) over a 2-sorted set (U ,V)

of propositional variables (with sorts for paths and respectively states) is
defined by the grammar

µLF 3 ϕ ::= tt | ff | q | Φ | ϕ ∧ ϕ | ϕ ∨ ϕ | [λF ]ϕ | ηq.ϕ
µL 3 Φ ::= tt | ff | p | [λ]ϕ | Φ ∧ Φ | Φ ∨ Φ

where q ∈ U , p ∈ V , η ∈ {µ, ν}, λF ∈ ΛF and λ ∈ Λ.

Thus, path formulas are constructed from propositional variables q ∈ U
and state formulas Φ using positive boolean operators, modal operators [λF ]
and fixpoint operators, whereas state formulas are constructed from atomic
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propositions p and modal formulas [λ]ϕ with ϕ a path formula, using posi-
tive boolean operators. The modal operators [λF ] and [λ] with λF ∈ ΛF and
λ ∈ Λ are thus both applied to path formulas, to obtain new path formulas
and respectively state formulas. They are, however, of very different natures:
while the operators [λF ] quantify over the one-step behaviour of executions
(recall that executions carry FX-coalgebra structure, and hence F -coalgebra
structure), the operators [λ] quantify over the suitably-structured, long-term
executions from particular states. This is made precise in the formal seman-
tics of µLΛF

Λ (U ,V), as defined below.

Definition 11. Given a T ◦ F -coalgebra (X, γ) and a 2-sorted valuation
V : (U ,V) → (PZX , PX) (interpreting path and state variables as sets of
executions and respectively of states), the semantics LϕMγ,V ∈ PZX of path
formulas ϕ ∈ µLF and JΦKγ,V ∈ PX of state formulas Φ ∈ µL is defined
inductively on the structure of ϕ and Φ by:

LqMγ,V = V (q)

LΦMγ,V = P (π1 ◦ ζX)(JΦKγ,V )

L[λF ]ϕMγ,V = (P (π2 ◦ ζX) ◦ (λF )ZX )(LϕMγ,V )

Lµq.ϕMγ,V = lfp((ϕ)γ,Vq )

Lνq.ϕMγ,V = gfp((ϕ)γ,Vq )

JpKγ,V = V (p)

J[λ]ϕKγ,V = (P execγ ◦ λZX )(LϕMγ,V )

and the usual clauses for the boolean operators, where, for q ∈ U , (ϕ)γ,Vq :
PX → PX denotes the monotone map defined by (ϕ)γ,Vq (Y ) = LϕMγ,V ′ with
V ′(p) = V (p) for p ∈ V , V ′(q) = Y and V ′(r) = V (r) for r ∈ U , r 6= q,
whereas lfp( ) and gfp( ) construct least and respectively greatest fixpoints.

We note that the monotonicity of the predicate liftings in ΛF and Λ together
with the absence of negation in either path or state formulas ensure that the
maps (ϕ)γ,Vq : PX → PX are monotone, and hence, by Theorem 7, admit
least and greatest fixpoints.

Let us now examine the definition of the semantics of µLΛF
Λ (U ,V) in more

detail:

• To define LΦMγ,V ∈ PZX from JΦKγ,V ∈ PX, one uses the image under
P of the map π1 ◦ ζX

ZX
ζX // X × FZX

π1 // X
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(which extracts the first state of an execution) to go from a set of states
(those satisfying Φ) to a set of executions. This formalises the idea that
a state formula Φ (regarded as a path formula) holds in a path precisely
when it holds in the first state of that path.

• To define L[λF ]ϕMγ,V ∈ PZX from LϕMγ,V ∈ PZX , one first applies the
relevant component of the predicate lifting λF to obtain a set of F -
structured observations on executions (as an element of PFZX), and
then uses the image under P of the map π2 ◦ ζX

ZX
ζX // X × FZX

π2 // FZX

(which extracts the one-step F -observation of an execution) to obtain
a set of executions again. This is the standard interpretation of the
modal formula [λF ]ϕ in the F -coalgebra π2 ◦ ζX .

• Finally, to define J[λ]ϕKγ,V ∈ PX from LϕMγ,V ∈ PZX , one first applies
the relevant component of the predicate lifting λ to LϕMγ,V ∈ PZX
to obtain a set of suitably-structured executions (i.e. an element of
PTZX), and then uses the image under P of the execution map to
obtain a set of states:

PZX
(λ)ZX // PTZX

P execγ
// PX

Example 5. 1. The negation-free fragment of the logic CTL* can be re-
covered as a fragment of the path-based fixpoint logic obtained by
taking P = P̂ , T = P+, F = Id, Λ = {λ�, λ♦} and ΛF = {λ◦}, with

the predicate liftings λ�, λ♦ : P̂ ⇒ P̂ ◦ P+ and λ◦ : P̂ ⇒ P̂ ◦ Id being
given by:

(λ�)X(Y ) = {Z ∈ P+X | Z ⊆ Y },
(λ♦)X(Y ) = {Z ∈ P+X | Z ∩ Y 6= ∅},
(λ◦)X(Y ) = Y.

The choice of λ� and λ♦ as predicate liftings for P+ captures precisely
the semantics of the path quantifiers A and E of CTL*, whereas λ◦
captures the semantics of the temporal operator X. The Until operator
of CTL* can then be encoded as a fixpoint path formula:

ϕUψ ::= µq.(ψ ∨ (ϕ ∧ ◦q))
where we write simply ◦ for the modal operator [λ◦].
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2. By varying the functor F to A × Id, we obtain an interesting variant
of CTL* interpreted over labelled transition systems. For this, we take
ΛF = {λa | a ∈ A} ∪ {λ◦}, with the predicate liftings λa : 1 ⇒
P̂ ◦ (A× Id) for a ∈ A and λ◦ : P̂ ⇒ P̂ ◦ (A× Id) being given by:

(λa)X(∗) = {a} ×X,
(λ◦)X(Y ) = A× Y.

We write a for the nullary modality [λa], and (as before) ◦ for the
unary modality [λ◦]. Then, the path formula a requires the first label
of a labelled computation path to be precisely a, whereas the formula
◦ϕ is true on a computation path s0a1s1a2s2 . . . precisely when ϕ is
true on s1a2s2 . . .. The property “a occurs along every computation
path” can be expressed in the resulting temporal language as �µX.(a∨
◦X) (with � a shorthand for [λ�]). The reader should compare this
to the formulation of the same property in the language obtained by
adding fixpoints to the negation-free variant of Hennessy-Milner logic,
namely as µX.(〈 〉tt ∧ [−a]X). Here, the formulas 〈 〉Φ and [−a]Φ
should be read as “there exists a successor state (reachable by some
label) satisfying Φ” and respectively ”all states reachable by labels
other than a satisfy Φ”. It is easy to see that, as the required nesting
depth of fixpoint operators increases, the encodings of path properties
in the latter language quickly become complex, making the path-based
language the preferred choice as a specification language.

3. By further varying the functor F to F = 1 + Id or F = 1 + A ×
Id, the resulting maximal execution maps incorporate both finite and
infinite computation paths, while the finite execution maps provided by
Definition 2 only account for the finite computation paths. Both maps
can be used as the semantic basis for path-based languages similar to
the two languages discussed above. The new languages can also contain
a nullary path operator ⊥, with the formula ⊥ only being true on a
finite path containing a single state.

Example 6. The negation-free fragment of the logic PCTL [3] can be re-
covered as a fragment of the path-based temporal logic obtained by taking
T = G1 and F = Id on SB, and the functor P : SB → Set to be given by
P (X,ΣX) = ΣX . The identity natural transformation λ◦ = idP : P ⇒ P
then defines a predicate lifting for F = Id. Also, for q ∈ [0, 1], the natural

34



transformations λ≥q, λ>q : P ⇒ P ◦ G1 given by

(λ≥q)(X,ΣX)(Y ) = {µ ∈M1(X,ΣX) | µ(Y ) ≥ q}
(λ>q)(X,ΣX)(Y ) = {µ ∈M1(X,ΣX) | µ(Y ) > q}

for Y ∈ ΣX define predicate liftings for T = G1. Now letting ΛF = {λ◦} and
Λ = {λ≥q | q ∈ [0, 1]} ∪ {λ>q | q ∈ [0, 1]} yields a path-based temporal logic
interpreted over standard Borel spaces. A fragment of this logic corresponds
to the logic PCTL, again interpreted over standard Borel spaces: λ◦, λ≥q and
λ>q capture the semantics of the PCTL operators X, [ ]≥q and respectively
[ ]>q, whereas the Until operator of PCTL can be encoded as:

ΦUΨ ::= µq.(Ψ ∨ (Φ ∧ ◦q)
where, as before, ◦ is shorthand for [λ◦].The interpretation of the resulting
logic over Markov chains with countable state spaces is then obtained by
regarding each such Markov chain as a discrete measurable space (which is
also standard Borel). Moreover, by varying the transition type to F = A× Id
or F = 1 + A × Id, one automatically obtains variants of PCTL interpreted
over generative probabilistic systems, possibly with explicit termination.

4.2. Path-based temporal logics with Until operators

In order to recover the full languages CTL* and PCTL as instances of
general path-based logics, one needs to incorporate negation into the syntax
of both path and state formulas. As a result, arbitrary fixpoints must be
left out, as the operators previously used to interpret them may fail to be
monotone. In what follows, we replace fixpoint formulas by Until operators
similar to the ones of CTL* and PCTL. However, a similar approach can be
used to define more general temporal operators.

Before defining the general syntax of path-based temporal logics with
Until operators, we observe that the structure of the functor F may result
in the associated notions of trace and execution involving some branching
(as is for instance the case when FX = A × X × X). In such cases, Until
operators can incorporate either a universal or an existential quantification
over the corresponding branches. Only existential versions of branching Until
operators are considered in what follows, and the reader is referred to [7] for
a definition of their universal counterparts.

Path-based temporal logics with Until operators are obtained by discard-
ing propositional variables q ∈ U from the path formulas of µLF , and re-
placing fixpoint formulas µq.ϕ and νq.ϕ by formulas ϕULψ, with L ⊆ ΛF
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a subset of predicate liftings for the functor F . Furthermore, negation is
added to the syntax of both path and state formulas, and the restriction to
monotone predicate liftings in Λ and ΛF is dropped, as no appeal to fixpoint
existence theorems is required to interpret Until operators.

Definition 12. The language LU ::= LUΛF
Λ (V) over a set V of propositional

variables is defined by the grammar

LUF 3 ϕ ::= tt | Φ | ¬ϕ | ϕ ∧ ϕ | [λF ]ϕ | ϕULϕ
LU 3 Φ ::= tt | p | [λ]ϕ | ¬Φ | Φ ∧ Φ

where p ∈ V , λF ∈ ΛF , L ⊆ ΛF and λ ∈ Λ.

Fixing L ⊆ ΛF corresponds to fixing a number of ways of inspecting the
structure of executions using one-step unfoldings. Often, L just consists of
a single modal operator, however, depending on the structure of the functor
F , one may choose to consider non-singleton sets L of modal operators. For
example, if F = A × Id × Id : Set → Set comes with predicate liftings
λ1, λ2 : P̂ ⇒ P̂ ◦ F defined by:

(λi)X(Y ) = {Z ⊆ X ×X | πi(Z) ⊆ Y }

for i ∈ {1, 2}, then one may choose to take L = {λ1, λ2}. In this case, F -
coalgebras are infinite, A-labelled binary trees, and the intended meaning of
an existential Until formula ϕULψ is that ϕ must hold along some branch
of the tree, starting from the root, until ψ is found to hold. In contrast,
a universal Until formula would require this for every branch of the tree.
Also, the existential/universal Until formula ϕU{λ1}ψ would require ϕ to hold
along the left-most branch of the tree (as [λ1] inspects the first component of
X ×X), until a state satisfying ψ is reached. More generally, an existential
Until formula ϕULψ should be read as “there exists a route described by the
modalities in L along which ϕ holds until ψ holds”.

The general semantics of existential Until operators is given by

LϕULψMγ,V =
⋃
t∈ω

LϕU≤tL ψMγ,V

where the formulas ϕU≤tL ψ with t ∈ ω are defined inductively by:

ϕU≤0
L ψ ::= ψ

ϕU≤t+1
L ψ ::= ψ ∨ (ϕ ∧

∨
λF∈L

[λF ](ϕU≤tL ψ))
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The semantics of state formulas remains as before.

Example 7. 1. The logic CTL* can be recovered as a fragment of the
path-based logic with Until operators by taking T = P+, F = Id, Λ =
{λ�}, ΛF = {λ◦} and L = {λ◦}, with λ� and λ◦ as in Example 5.1.

2. Similarly, the logic PCTL interpreted over standard Borel spaces is
obtained as a fragment of the path-based logic with Until operators
resulting from T = G1, F = Id, Λ = {λ≥q}, ΛF = {λ◦} as in Example 6,
and L = {λ◦}. The operators [ ]>q of PCTL can now be defined as:

[ϕ]>q ::= ¬[¬ϕ]≥1−q

for q ∈ [0, 1]. Finally, the standard interpretation of PCTL over Markov
chains is again obtained by viewing a Markov chain as a standard Borel
space.

5. Concluding Remarks

We have defined maximal traces and executions for systems modelled
as coalgebras of functors obtained as the composition of a computational
type (given by an affine monad) with a transition type (typically given by a
shapely polynomial endofunctor), under the additional assumption that the
computational type preserves certain ω

op
-limits. This assumption is not sat-

isfied by the non-empty powerset functor, which we have treated separately.
As a result, we have obtained maximal trace maps and maximal execution
maps for deterministic, non-deterministic and stochastic systems.

We have subsequently used (maximal) execution maps to give seman-
tics to generic path-based coalgebraic temporal logics, instances of which
subsume known path-based logics such as CTL* and PCTL. Moreover, we
have shown that by simply varying the transition type, interesting variants
of known logics can be obtained with little effort.

Future work will generalise the results in Section 3 to arbitrary monads.
Apart from the powerset and subprobability measure monads, non-affine
monads of interest include the lift, finite list and finite multiset monads
(with the latter being relevant to graded temporal logic). Unlike in the
case of non-deterministic or stochastic systems, working with the affine sub-
monads of the last three monads (which, as mentioned earlier, coincide with
the identity monad) is not a solution. Incorporating non-affine monads into
our treatment of maximal traces is expected to involve moving from cones
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over the image under J of the final sequence of F to lax cones, with a suitable
DCpo-structure on homsets in Kl(T ). We also plan to study the relationship
between finite and maximal traces.

Another direction for future work is to investigate the expressive power
of path-based temporal logics (in particular, how this compares in general to
the expressive power of coalgebraic fixpoint logics), and to further develop
the theory of these logics.
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