
A Taxonomy of Hoare-Like Logics
Towards a Holistic View using Predicate Transformers and Kleene Algebras with Top and Tests

LENA VERSCHT, Saarland University, Germany and RWTH Aachen, Germany

BENJAMIN LUCIEN KAMINSKI, Saarland University, Germany and University College London, UK

We study Hoare-like logics, including partial and total correctness Hoare logic, incorrectness logic, Lisbon

logic, and many others through the lens of predicate transformers à la Dijkstra and through the lens of

Kleene algebra with top and tests (TopKAT). Our main goal is to give an overview – a taxonomy – of how

these program logics relate, in particular under different assumptions like for example program termination,

determinism, and reversibility. As a byproduct, we obtain a TopKAT characterization of Lisbon logic, which

– to the best of our knowledge – is a novel result.

CCS Concepts: • Theory of computation→ Program semantics; Hoare logic; Programming logic; Logic
and verification; Pre- and post-conditions; Program verification; Program specifications.

Additional Key Words and Phrases: program logics, predicate transformers, Kleene algebra with top and tests

ACM Reference Format:
Lena Verscht and Benjamin Lucien Kaminski. 2025. A Taxonomy of Hoare-Like Logics: Towards a Holistic

View using Predicate Transformers and Kleene Algebras with Top and Tests. Proc. ACM Program. Lang. 9,
POPL, Article 60 (January 2025), 30 pages. https://doi.org/10.1145/3704896

1 Introduction
Arguably one of the most prominent and well-studied program logics is Hoare [1969] logic for

verifying program correctness: the ability of a specified set of initial states to reach only some

specified set of (safe) final states. More recently, incorrectness logic has attracted considerable

attention [O’Hearn 2019; Zhang et al. 2022; Zhang and Kaminski 2022; Zilberstein et al. 2023]. Here,

the property of interest is to prove that an entire specified set of undesired final states is reachable
from a specified set of initial states, thus proving the (true positive) presence of a bug. Program

correctness and incorrectness were described as “two sides of the same coin” [O’Hearn 2019]. We

argue that there are at least three sides or rather dimensions to the program logic coin:

(1) correctness (being able to reach) vs. incorrectness (being reachable)

(2) totality vs. partiality
(3) angelic vs. demonic resolution of nondeterminism

We will explore how one can pigeonhole total and partial correctness, as well as incorrectness into
this view and explore further program properties that emerge from exhausting all combinations of

the above dimensions. Our primary objective is to build a taxonomy of program logics that is in a

sense exhaustive and provides an overview of existing logics, which are often referenced to under

different names (e.g. reverse Hoare logic [de Vries and Koutavas 2011] essentially is the same as

incorrectness logic [O’Hearn 2019]).

Authors’ Contact Information: Lena Verscht, lverscht@cs.uni-saarland.de, Saarland University, Saarbrücken, Germany

and RWTH Aachen, Aachen, Germany; Benjamin Lucien Kaminski, kaminski@cs.uni-saarland.de, Saarland University,

Saarbrücken, Germany and University College London, London, UK.

© 2025 Copyright held by the owner/author(s).

ACM 2475-1421/2025/1-ART60

https://doi.org/10.1145/3704896

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 60. Publication date: January 2025.

This work is licensed under a Creative Commons Attribution 4.0 International License.

HTTPS://ORCID.ORG/0000-0001-6823-7918
HTTPS://ORCID.ORG/0000-0001-5185-2324
https://doi.org/10.1145/3704896
https://orcid.org/0000-0001-6823-7918
https://orcid.org/0000-0001-5185-2324
https://doi.org/10.1145/3704896
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3704896&domain=pdf&date_stamp=2025-01-09

60:2 Lena Verscht and Benjamin Lucien Kaminski

We choose predicate transformers [Dijkstra 1976] as our primary formalism for expressing

program properties. For example, using weakest liberal preconditions, we can express the validity of

partial correctness Hoare triples as 𝑏 ⊆ wlpJ𝑝K(𝑐), expressing that the precondition 𝑏 is included in

the set wlpJ𝑝K(𝑐) of states on which 𝑝 either terminates in 𝑐 or not at all. As a secondary formalism,

we choose Kleene algebra with tests [Kozen 1997] or rather Kleene algebra with top and tests (TopKAT)
[Zhang et al. 2022]. The basic idea is to model programs (as well as pre- and postconditions) as

elements of a relational algebra. We then build terms by composing these relations and express

program properties as equations between terms. For instance, partial correctness can be expressed

in TopKAT as ⊤𝑏𝑝𝑐 = ⊤𝑏𝑝 . This essentially expresses that the codomains of the relations 𝑏𝑝𝑐 (filter

initial states for 𝑏, execute 𝑝 , filter final states for 𝑐) and 𝑏𝑝 (filter initial states for 𝑏, execute 𝑝) are

equal.

Related Work. Given a recent surge in novel program logics, there has been substantial interest in

developing frameworks which unify those logics. Zilberstein et al. [2023] introduce outcome logic,
a framework capable of accommodating both correctness and incorrectness reasoning. Similarly,

Cousot [2024] explores program logics through the lens of abstract interpretation, constructing

and comparing various logics within that framework. Ascari et al. [2024] contrast Hoare logic,

incorrectness logic, and the related logic of necessary preconditions. In their resulting taxonomy, they

address a gap by introducing what they term sufficient incorrectness logic. More work in this direction

includes [Bruni et al. 2023; Maksimović et al. 2023; Milanese and Ranzato 2022; Wickerson 2024].

We give many more pointers to related work scattered across the paper, in particular Section 4.2.

Contributions & Organization. In Section 2, we present syntax and semantics of a simple nonde-

terministic model programming language. In Section 3, we (gently and systematically) introduce 8

different predicate transformers à la Dijkstra. Some were described before, some are new, emerging

from an investigation of nondeterminism in forward analysis.

We furthermore identify a simple, yet crucial difference between forward and backward analyses:

Given a program 𝑝 and an initial state 𝜎 , executing 𝑝 on 𝜎 may (nondeterministically) both terminate

in some final state (execution leads to somewhere) and also not terminate at all (execution leads

to nowhere). However, given a final state 𝜏 , it cannot be that by executing 𝑝 the state 𝜏 was both

reachable (execution came from somewhere) and unreachable (execution cam from nowhere).

In Section 4, we use these predicate transformers to define 16 different program logics (by over

and underapproximating each of the 8 transformers). These include well-known ones like partial

and total correctness Hoare logic and incorrectness logic, but also lesser known (Lisbon logic)

and new ones. We study relationships across these logics, thus building a taxonomy of them.

We furthermore study how this taxonomy (partly) collapses under different assumptions like e.g.

program termination.

In Section 5, we study how to express various of these 16 program logics in Kleene algebra with

top and tests, including Lisbon logic, which to the best of our knowledge is a new result. In Section 6,

we give an updated taxonomy through the lens of TopKAT. Throughout this paper, we will discover
several incongruities in an otherwise quite symmetrical and dual taxonomy. We summarize these

in Section 7. Proofs, definitions, and additional examples are provided in an extended version of

this paper [Verscht and Kaminski 2024].

2 The Nondeterministic Guarded Command Language
We consider programs in a simple nondeterministic guarded command language (nGCL):

𝑝 F skip | 𝑥 := 𝑒 | 𝑝 # 𝑝 | { 𝑝 } 2 { 𝑝 } | if (𝑏) { 𝑝 } else { 𝑝 }
| while (𝑏) { 𝑝 }

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 60. Publication date: January 2025.

A Taxonomy of Hoare-Like Logics 60:3

Here, 𝑥 ∈ Vars is a variable. The set of program states (𝜎 , 𝜏 , . . .) is given by Σ = { 𝜎 | 𝜎 : Vars → Z },
i.e. functions mapping program variables to integers. By 𝜎 [𝑥/𝑣], we denote a new state that is

obtained from 𝜎 by letting variable 𝑥 ∈ Vars evaluate to 𝑣 ∈ Z. Formally: 𝜎 [𝑥/𝑣] (𝑦) = 𝑣 , if 𝑦 = 𝑥 ;

and 𝜎 [𝑥/𝑣] (𝑦) = 𝜎 (𝑦), otherwise.
In the grammar above, 𝑒 is an arithmetic expression, and 𝑏 is a predicate or test or condition (we

use these interchangeably). For our intents and purposes, a predicate is a subset of program states

𝑏 ⊆ Σ, i.e. a function mapping program states to truth values {0, 1}. We denote by B = {0, 1}Σ the

set of all predicates. The negation of a predicate 𝑏 is denoted by 𝑏 . Given a program state 𝜎 , we

denote by 𝜎 (𝜉) the evaluation of an arithmetic expression or predicate 𝜉 in 𝜎 .

The semantics of nGCL programs is given in terms of a collecting semantics (as is standard in

program analysis, see [Cousot and Cousot 1977; Hecht 1977; Rival and Yi 2020]).

Definition 2.1 (Collecting Semantics for nGCL Programs). Let 𝑆 ⊆ Σ be a set of program states

and let J𝑏K𝑆 = { 𝜎 ∈ 𝑆 | 𝜎 |= 𝑏 } be a filtering of 𝑆 to only those states where the predicate 𝑏 holds.

The collecting semantics J𝑝K : P(Σ) → P(Σ) of an nGCL program 𝑝 is defined inductively by

JskipK𝑆 = 𝑆 (effectless program)

J𝑥 := 𝑒K𝑆 = {𝜎 [𝑥/𝜎 (𝑒)] | 𝜎 ∈ 𝑆} (assignment)

J𝑝1 # 𝑝2K𝑆 = (J𝑝2K ◦ J𝑝1K)𝑆 (sequential composition)

Jif (𝑏) { 𝑝1 } else { 𝑝2 }K𝑆 = (J𝑝1K ◦ J𝑏K)𝑆 ∪ (J𝑝2K ◦ J𝑏K)𝑆 (conditional choice)

Jwhile (𝑏) { 𝑝 }K𝑆 = J𝑏K
(
lfp 𝑋 . 𝑆 ∪

(
J𝑝K ◦ J𝑏K

)
𝑋
)

(loop)

J{ 𝑝1 } 2 { 𝑝2 }K𝑆 = J𝑝1K𝑆 ∪ J𝑝2K𝑆 . (nondeterministic choice)

By slight abuse of notation, we write J𝑝K(𝜎) for J𝑝K{𝜎}. We denote the inverse semantics of 𝑝 by

J𝑝K−1𝑇 =
{
𝜎
�� 𝑇 ∩ J𝑝K(𝜎) ≠ ∅

}
. If a program 𝑝 does not terminate, we say that 𝑝 diverges. △

In words, for a program 𝑝 ∈ nGCL, the collecting semantics J𝑝K𝑆 maps a set of initial program

states 𝑆 ∈ P(Σ) to the set of all final states reachable from a state in 𝑆 .

Remark 1 (Diverging Programs). Consider the program skip that does nothing and the program

{ skip } 2 { while (true) { skip } } that nondeterministically decides between doing nothing and

diverging. Their collecting semantics are given by

JskipK𝑆 = 𝑆 ∪ ∅ = JskipK𝑆 ∪ Jwhile (true) { skip }K𝑆
= J{ skip } 2 { while (true) { skip } }K𝑆 ,

i.e. their collecting semantics coincide, despite their arguably different behaviors. △

3 Predicate Transformers
Deductive reasoning on source code level with predicate transformers is due to Dijkstra [1975].

There are fundamentally two types of predicate transformers: backward moving weakest precondi-

tions and forward moving strongest postconditions. The terms weakest and strongest are rooted
historically in their relationship to Hoare logic. They loose their plausibility in other contexts like

incorrectness logic, but – also for lack of better names – we stick here to these historical terms.

3.1 Weakest Preconditions
The weakest precondition calculus features predicate transformers of type wpJ𝑝K : B → B for a

program 𝑝 ∈ nGCL. Given a postcondition 𝑐 ∈ B, the weakest precondition of 𝑐 (under 𝑝) is a

predicate wp J𝑝K(𝑐) containing precisely those (initial) states from which the computation of 𝑝

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 60. Publication date: January 2025.

60:4 Lena Verscht and Benjamin Lucien Kaminski

(1) terminates and (2) does so in a (final) state satisfying 𝑐 . We will also say that wp J𝑝K(𝑐) are the
initial states that are coreachable from postcondition 𝑐 by executing 𝑝 .

In the presence of nondeterminism, we must decide whether, for each initial state 𝜎 , we require

all computation paths emerging from 𝜎 to terminate in 𝑐 or whether we require merely the existence
of such a path. Traditionally, the former (all) is referred to as demonic nondeterminism, and the

latter (exist) as angelic. These two design choices can be accommodated within Dijkstra’s calculi,

resulting in two slightly different variants of weakest precondition transformers.

Definition 3.1 (Weakest Precondition Transformers [Dijkstra 1976]). Given a program 𝑝 and a

postcondition 𝑐 , the angelic weakest precondition is defined as

awpJ𝑝K(𝑐) = 𝜆 𝜎.
∨

𝜏∈J𝑝K(𝜎)
𝑐 (𝜏) .

The demonic weakest precondition is defined as

dwpJ𝑝K(𝑐) = 𝜆 𝜎.

false, if 𝑝 can diverge on 𝜎∧
𝜏∈J𝑝K(𝜎)

𝑐 (𝜏), otherwise .

△

It is worthwhile to note that dwp is the standard transformer introduced by Dijkstra.

Both awp and dwp are total correctness transformers in the sense that both deem nontermination

undesired behavior. More precisely, dwpJ𝑝K(𝑐) indeed contains no initial states whatsoever on

which 𝑝 could possibly diverge. awpJ𝑝K(𝑐), on the other hand, may contain such initial states 𝜎 ,

but there must then also exist a (nondeterministic) possibility for 𝜎 to terminate in 𝑐 .

3.1.1 Liberality. Proving total correctness can be separated into two subtasks, namely (1) proving

partial correctness (i.e. correctness modulo termination) and (2) proving termination. Proving partial
correctness motivates the definition of liberal variants of the aforementioned calculi: Given a

postcondition 𝑐 , the weakest liberal precondition of 𝑐 (under 𝑝) is a predicate wlpJ𝑝K(𝑐) containing
precisely those states from which the computation of 𝑝 either (1) diverges or (2) terminates in

a state satisfying 𝑐 . In other words, the computation reaches 𝑐 , if it terminates at all. As in the

non-liberal case, we again have both demonic and angelic variants of wlp.

Definition 3.2 (Weakest Liberal Precondition Transformers [Dijkstra 1976]). Given a program 𝑝

and a postcondition 𝑐 , the demonic weakest liberal precondition is defined as

dwlpJ𝑝K(𝑐) = 𝜆 𝜎.
∧

𝜏∈J𝑝K(𝜎)
𝑐 (𝜏) .

The angelic weakest liberal precondition is defined as

awlpJ𝑝K(𝑐) = 𝜆 𝜎.

true, if 𝑝 can diverge on 𝜎∨
𝜏∈J𝑝K(𝜎)

𝑐 (𝜏), otherwise .

△

Again, we note that the demonic variant dwlp is the standard one studied by Dijkstra.

Both dwlp and awlp are partial correctness transformers in the sense that both deem nontermina-

tion as acceptable behavior. More precisely, dwlpJ𝑝K(𝑐) indeed contains all initial states on which

𝑝 must either diverge or terminate in 𝑐 . On the other hand, awlpJ𝑝K(𝑐) contains all initial states on
which 𝑝 may either diverge or terminate in 𝑐 .

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 60. Publication date: January 2025.

A Taxonomy of Hoare-Like Logics 60:5

3.1.2 Inductive Definitions of Weakest Precondition Transformers. The angelic/demonic weakest

(liberal) precondition transformers can all be defined by induction on the program structure, see

[Verscht and Kaminski 2024, Appendices D.1 and D.2].

We note also that the direction of analysis is backwards, as we start with a predicate over final

states and transform it into a predicate on initial states. The result of the analysis on the other hand

is a forecast: a weakest precondition forecasts for each initial state whether after the computation

the postcondition will be satisfied.

(1) (2) (3) (4) (5) (6) (7)

dwp

awp

dwlp

awlp

𝑐 𝑐

b

b

b b

Fig. 1. Illustration of different coreachability classes and different
wp transformers. The top part represents initial states, divided
(in columns) into coreachability classes. The lower part repre-
sents final states, divided into those that satisfy postcondition 𝑐
and those that do not. On top, the colored boxed indicate which
coreachability classes are included in which transformers.

3.1.3 Anatomy of Weakest Precon-
dition Transformers. Given an initial

state 𝜎 , a program 𝑝 , and a postcondi-

tion 𝑐 , we can make out three behav-

ioral dimensions with respect to how

𝑝 behaves when executed on 𝜎 :

(wd1) 𝑝 can terminate in 𝑐 or not,

(wd2) 𝑝 can terminate in 𝑐 or not,

(wd3) 𝑝 can diverge or not.

In the presence of nondeterminism,

these dimensions span a space of

2
3 = 8 different types of behaviors

that 𝑝 can exhibit. For example, a

program could nondeterministically

both terminate in 𝑐 or diverge. We

call the behavioral classes in that

space coreachability classes, since

they speak about whether initial

states are coreachable from 𝑐 (or 𝑐).

For example, there is a coreachability class containing all initial states from which 𝑝 can both

diverge and reach 𝑐 . However, it cannot happen that 𝑝 neither terminates in 𝑐 , nor in 𝑐 , nor diverges.

This thus leaves 2
3 − 1 = 7 sensible coreachability classes, which are illustrated in Figure 1:

(1) 𝑝 terminates in 𝑐 .

(2) 𝑝 terminates in 𝑐 or diverges (i.e. 𝑝 does not terminate in 𝑐).

(3) 𝑝 terminates in 𝑐 or terminates in 𝑐 (i.e. 𝑝 terminates).

(4) 𝑝 diverges.

(5) 𝑝 terminates in 𝑐 , or in 𝑐 , or diverges (i.e. no restriction on behavior of 𝑝).

(6) 𝑝 terminates in 𝑐 or diverges (i.e. 𝑝 does not terminate in 𝑐).

(7) 𝑝 terminates in 𝑐 .

These coreachability classes fully partition the state space. A precondition transformer can now opt

to include a class (𝑖) in its result or not. The four rather natural transformers we described above

are illustrated in Figure 1. Along a row, green shaded boxes indicate which classes are included

in the respective weakest precondition transformer with respect to postcondition 𝑐 (in blue). For

instance, awpJ𝑝K(𝑐) includes classes (1), (2), (3), and (5).

Assuming that the above coreachability classes are meaningful, this makes for 2
7 = 128 possible

weakest precondition transformers
1
of which some might not even depend on the postcondi-

tion 𝑐 (e.g. include only (4)), others might even be trivial (e.g. include none, include all). Some are

1
Without nondeterminism, there would be only 3 coreachability classes (reach 𝑐 , reach 𝑐 , diverge) and the number of

possible precondition transformers would reduce to 2
3 = 8.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 60. Publication date: January 2025.

60:6 Lena Verscht and Benjamin Lucien Kaminski

contrapositives of each other. For example, awp and dwlp are contrapositive in the sense that

awpJ𝑝K(𝑐) = dwlpJ𝑝K(𝑐) and dwlpJ𝑝K(𝑐) = awpJ𝑝K(𝑐)
This contrapositivity relationship also holds for dwp and awlp. The contrapositivities can also be

rediscovered graphically in Figure 1: To get from awlp to dwp, for instance, proceed as follows:

(1) Take row 1 (awlp).
(2) Invert colors (i.e. turn green shaded boxes into empty ones and vice versa; corresponds to

negating the entire result).

(3) Mirror the entire row horizontally (corresponds to negating the postcondition).

(4) Obtain row 4 (dwp).

3.2 Strongest Postconditions
Weakest precondition transformers are well-researched and have been extended for various pur-

poses, including quantities, probabilistic programs, and even quantum programs [D’hondt and

Panangaden 2006; Kaminski et al. 2018; Morgan et al. 1996]. Dually to weakest preconditions, Dijk-

stra and Scholten [1990] defined strongest postcondition transformers, also of type spJ𝑝K : B → B.
Given now a precondition 𝑏 ∈ B, the strongest postcondition of 𝑏 (under 𝑝) is a predicate sp J𝑝K(𝑏)
containing precisely those (final) states that are reachable from an (initial) state in 𝑏 by executing 𝑝 .

Definition 3.3 (Strongest Postcondition Transformer [Dijkstra 1976]). Given a program 𝑝 ∈ nGCL
and a precondition 𝑏 ∈ Pred, the angelic strongest postcondition is defined as

asp J𝑝K(𝑏) = 𝜆 𝜏.
∨

𝜎∈J𝑝K−1 (𝜏)
𝑏 (𝜎).

△

As suggested by the operator name asp, we have opted here for angelic resolution of nondeterminism.

This is also the standard choice of Dijkstra. We will discuss the nature of this nondeterminism as

well as demonic sp later in Section 3.2.2.

3.2.1 Liberality. Dually to strongest postconditions, there are also strongest liberal postconditions,

originally described by Cousot and then later given an inductive definition by Zhang and Kaminski

[2022]. Given a precondition 𝑏 ∈ B, the strongest liberal postcondition of 𝑏 (under 𝑝) is a predi-

cate slpJ𝑝K(𝑏) containing precisely those (final) states that are reachable (1) exclusively from (initial)

states in 𝑏 or (2) entirely unreachable (i.e. from any initial state in Σ) by the computation of 𝑝 .

Definition 3.4 (Strongest Liberal Postcondition Transformers [Zhang and Kaminski 2022]). Given a

program 𝑝 and a precondition 𝑏, the demonic strongest liberal postcondition is defined as

dslpJ𝑝K(𝑏) = 𝜆 𝜏.
∧

𝜎∈J𝑝K−1 (𝜏)
𝑏 (𝜎).

△

As the name dslp suggests, we now consider demonic resolution of nondeterminism. As shown

above, strongest (liberal) postconditions can again be defined via the collecting semantics. The

inductive rules can be found in [Verscht and Kaminski 2024, Appendices D.3 and D.4].

The analysis direction is now forwards: starting with a predicate on initial states, we transform it

into a predicate on final states. The result of the analysis on the other hand is a backcast: a strongest
postcondition backcasts for each final state whether the computation started in the precondition.

The demonic strongest liberal post is intentional because it makes for a very dual theory as

we will see later. In the context of the strongest post reasoning, liberality refers to unreachability

rather than divergence. A state from which computation diverges does not have a final state that

it reaches, i.e. it does not terminate. Conversely, an unreachable state does not have an initial

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 60. Publication date: January 2025.

A Taxonomy of Hoare-Like Logics 60:7

b

awp

b

dwp

b

asp

b

dsp

Fig. 2. Duality of angelic and demonic weakest pre versus angelic and demonic strongest post, demonstrated
on four copies of the same program. Preconditions are circled in dashed green, postconditions in dashed blue.
The rightmost initial state can terminate in the postcondition, but may also terminate outside. Therefore,
it is included in the angelic but not in the demonic weakest precondition. Dually, the leftmost final state is
reachable from the precondition but also from outside. Therefore, it is included in the angelic but not in the
demonic strongest postcondition.

state that reaches it, i.e. it is not reachable from any initial state. The duality of termination and

reachability has previously been discussed by Zhang and Kaminski [2022] and Ascari et al. [2024].

The requirement of exclusive reachability - excluding states that can also be reached from outside

of 𝑏 - is what makes this transformer demonic. This concept will be further explored in the following

section, where we discuss how nondeterminism arises in forward analyses, a topic that, to the best

of our knowledge, has not been addressed in detail in the literature.

3.2.2 Resolution of Nondeterminism in Strongest Postconditions. Whereas nondeterminism in weak-

est preconditions arises from explicit nondeterministic branching in the program, the nondetermin-

ism relevant for strongest postconditions arises from confluence, i.e. when multiple initial states

lead to the same final state, even for deterministic computations. Consider for instance the fully

deterministic program 𝑥 := 2. Then both states 𝜎 (𝑥) = 5 and 𝜎 ′ (𝑥) = 17 lead to the same final state

𝜏 (𝑥) = 2. If two different initial states can reach 𝜏 , this is somewhat dual to one initial state possibly

terminating in two final states. For an illustration, see Figure 2.

When deciding whether a final state 𝜏 is in the strongest postcondition of some precondition 𝑏,

we now need to choose whether we require all initial states that can reach 𝜏 to satisfy 𝑏 or if it

suffices if there exists such a state. Following backward terminology, we refer to the former as

demonic and the latter as angelic resolution of nondeterminism. We have previously defined angelic
strongest (non-liberal) and demonic strongest liberal postconditions. Consequently, we will now
define the missing demonic strongest (non-liberal) and angelic strongest liberal postconditions.

Definition 3.5 (Demonic Strongest Postcondition Transformers). Given a program 𝑝 and a precondi-

tion 𝑏, the demonic strongest postcondition is defined as

dsp J𝑝K(𝑏) = 𝜆 𝜏.

∧
𝜎∈J𝑝K−1 (𝜏)

𝑏 (𝜎), if J𝑝K−1 (𝜏) ≠ ∅

false, otherwise . △

The demonic strongest post transformer maps a precondition 𝑏 to the set of states that are

exclusively reachable by the initial states contained in 𝑏. Aligning with the intuition above, this is

a stronger requirement than for the angelic strongest post, and demonic in the sense that all paths
leading to the final state in question have to originate in the given precondition.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 60. Publication date: January 2025.

60:8 Lena Verscht and Benjamin Lucien Kaminski

Definition 3.6 (Angelic Strongest Liberal Postcondition Transformers). Given a program 𝑝 and a

precondition 𝑏, the angelic strongest liberal postcondition is defined as

aslpJ𝑝K(𝑏) = 𝜆 𝜏.

∨
𝜎∈J𝑝K−1 (𝜏)

𝑏 (𝜎), if J𝑝K−1 (𝜏) ≠ ∅

true, otherwise . △

The angelic strongest liberal post maps a precondition 𝑏 to the set of states that either are

reachable from 𝑏 or unreachable. Therefore, this is indeed a liberal extension of the angelic strongest

post calculus as it accepts unreachable states.

𝑏 𝑏

(1) (2) (3) (4)

dsp

asp

dslp

aslp

Fig. 3. An illustration of the different sp-
style transformers. The upper part depicts
all possible program executions for a fixed
final state and a precondition 𝑏. Below, the
colored boxed indicate which sets of final
states are included in which transformers.

3.2.3 Anatomy of Strongest Postcondition Transformers.
Dual to the coreachability classes of initial states we con-

sidered for weakest preconditions, we will now consider

reachability classes of final states for strongest postcondi-
tions. Given a final state 𝜏 , a program 𝑝 , and a precondi-

tion 𝑏, we can make out two dimensions regarding what

was the case before 𝑝 reached 𝜏 :

(sd1) 𝑝 could have been started in 𝑏 or not,

(sd2) 𝑝 could have been started in 𝑏 or not,

These dimensions span a space of 2
2 = 4 different types

of behaviors. We call the behavioral classes in that space

reachability classes, since they speak about whether final

states are reachable from 𝑏 (or 𝑏). For example, there is

a reachability class containing all final states that are

reachable by an execution of 𝑝 both from 𝑏 and from 𝑏 .

The four reachability classes are:

(1) 𝑝 was started in 𝑏.

(2) 𝑝 could have been started in 𝑏 or in 𝑏 .

(3) The unreachable states.

(4) 𝑝 was started in 𝑏 .

These reachability classes fully partition the state space.

We note that a final state can either be unreachable or not, but never both. This is in contrast to

coreachability where computations from an initial state can very well both diverge and terminate.

A postcondition transformer can now opt to include a class (𝑖) in its result or not. The four

natural transformers we described above are illustrated in Figure 3. Along a row, blue shaded boxes
indicate which classes are included in the respective strongest postcondition transformer with

respect to precondition 𝑏 (in green). For instance, asp J𝑝K(𝑐) includes classes (1) and (2).

Assuming that the above reachability classes are meaningful, this makes for 2
4 = 16 possible

strongest postcondition transformers of which some might not even depend on the precondition 𝑏

(e.g. include only (3)), others might be trivial (e.g. include none, include all). Some are contrapositives

of each other. For example, asp and dslp are contrapositive in the sense that

asp J𝑝K(𝑐) = dslpJ𝑝K(𝑐) and dslpJ𝑝K(𝑐) = asp J𝑝K(𝑐)

This contrapositivity relationship also holds for dsp and aslp. The contrapositivities can also be

rediscovered graphically in Figure 1 analogously to how this was the case for wp transformers.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 60. Publication date: January 2025.

A Taxonomy of Hoare-Like Logics 60:9

3.2.4 Inductive Rules for Strongest Postcondition Transformers. The transformers asp and dslp can

be defined by induction on the program structure (see [Verscht and Kaminski 2024, Appendices

D.3 and D.4] for the concrete rules). For the novel transformers dsp and aslp, we cannot quite
give an inductive set of rules. To see why, consider the nondeterministic program { 𝑝1 } 2 { 𝑝2 }.
Recall that the angelic strongest postcondition of 𝑏 is the set of states that are reachable from

𝑏. The set of states reachable by { 𝑝1 } 2 { 𝑝2 } is the union of the states reachable from 𝑝1 and

from 𝑝2, i.e. we get asp J{ 𝑝1 } 2 { 𝑝2 }K(𝑏) = asp J𝑝1K(𝑏) ∪ asp J𝑝2K(𝑏). Similarly, if we want

to compute the demonic strongest liberal post, which contains the set of states unreachable or

exclusively reachable from 𝑏, we take the intersection of the results for both subprograms and get

dslpJ{ 𝑝1 } 2 { 𝑝2 }K(𝑏) = dslpJ𝑝1K(𝑏) ∪ dslpJ𝑝2K(𝑏).
The demonic strongest post of 𝑏 contains all states that are exclusively reachable from 𝑏. For

{ 𝑝1 } 2 { 𝑝2 }, a final state 𝜏 is contained in this set if it fulfills one of the following three cases:

(1) 𝜏 is exclusively reachable from 𝑏 by executing 𝑝1 and unreachable by executing 𝑝2.

(2) 𝜏 is exclusively reachable from 𝑏 by executing 𝑝2 and unreachable by executing 𝑝1.

(3) 𝜏 is exclusively reachable from 𝑏 by executing 𝑝1 and exclusively reachable by executing 𝑝2.

If we restrict to using only the demonic strongest post for the subprograms, the only case we can

represent is (3) by dsp J𝑝1K(𝑏) ∩dsp J𝑝2K(𝑏). For (1) and (2), we need to reason about unreachability,

which is not possible using dsp J𝑝1K(𝑏) or dsp J𝑝2K(𝑏). Similar problems arise for aslp.
As a silver lining, we can characterize dsp as a combination of other transformers: We have that

dsp J𝑝K(𝑏) = asp J𝑝K(𝑏) ∩ dslpJ𝑝K(𝑏),
as a final state 𝜏 must be exclusively reachable from 𝑏 in order to be contained in dsp J𝑝K(𝑏). If
𝜏 ∈ dslpJ𝑝K(𝑏), we know that 𝜏 is either (1) unreachable or (2) exclusively reachable from 𝑏. If

additionally 𝜏 ∈ asp J𝑝K(𝑏), we know that 𝜏 is definitely reachable from 𝑏, which excludes case (1).

This can also be seen in Figure 3: The intersection of asp J𝑝K(𝑏) and dslpJ𝑝K(𝑏) only contains the

first reachability class, which is equivalent to dsp J𝑝K(𝑏). Similarly, we have that

aslpJ𝑝K(𝑏) = asp J𝑝K(𝑏) ∪ dslpJ𝑝K(𝑏).
Therefore, although we cannot provide an inductive set of rules directly, we can make use of the

existing rules and compute dsp (resp. aslp) with two inductive computations.

3.3 Backward vs. Forward Analysis
The characterization of the novel transformers dsp and aslp goes via union and intersection of

existing transformers, raising the question whether we can do the same for the weakest pre calculi,

i.e. whether we have that

dwpJ𝑝K(𝑐) ?

= awpJ𝑝K(𝑐) ∩ dwlpJ𝑝K(𝑐) and awlpJ𝑝K(𝑐) ?

= awpJ𝑝K(𝑐) ∪ dwlpJ𝑝K(𝑐).
This is – perhaps somewhat surprisingly – not the case. To see why, recall Figure 1. The set

dwlpJ𝑝K(𝑐) contains states from which computation always either terminates in 𝑐 or diverges,

and awpJ𝑝K(𝑐) contains all states that can reach 𝑐 . In Figure 1, their intersection corresponds to

coreachability classes (1) and (2). This is not equivalent to dwpJ𝑝K(𝑐), which excludes class (2),

containing states from which computation either diverges or terminates in 𝑐 .

The union of awpJ𝑝K(𝑐) and dwlpJ𝑝K(𝑐) contains states fromwhich computation either can reach

𝑐 or computation always diverges. A state from which computation either diverges or terminates

outside of 𝑐 (class no. 6) is not contained in this set, but in awlpJ𝑝K(𝑐).
Note that both counterexamples are concerned with states with branching divergence, i.e. a

computation that nondeterministically either diverges or terminates in some states. In fact, if we

exclude such behavior, the equations above hold.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 60. Publication date: January 2025.

60:10 Lena Verscht and Benjamin Lucien Kaminski

Table 1. An overview of the intuition for all presented predicate transformers.

transformer captured states (precondition 𝑏, postcondition 𝑐)

angelic weakest pre (awp) initial states that can reach 𝑐

angelic weakest liberal pre (awlp) initial states that can reach 𝑐 or diverge

demonic weakest pre (dwp) initial states that can only reach 𝑐

demonic weakest liberal pre (dwlp) initial states that can only reach 𝑐 or diverge

angelic strongest post (asp) final states that are reachable from 𝑏

angelic strongest liberal post (aslp) final states that are reachable from 𝑏 or unreachable

demonic strongest post (dsp) final states that are exclusively reachable from 𝑏

demonic strongest liberal post (dslp) final states that are exclusively reachable from 𝑏 or unreachable

b

b

Fig. 4. Branching divergence versus conflu-
ence of unreachability.

This also gives intuition as to why the respective equa-

tions hold for sp transformers. As previously mentioned,

the dual concept of divergence is unreachability. Illus-

trated in Figure 4, branching divergence represents the

division of a computation into one that reaches a final

state and one that does not. Therefore, the dual should

reflect the confluence of a computation that is reachable

from an initial state and one that is not, as shown in the

lower half of Figure 4. But, this is paradox: A final state

can never be unreachable and reachable at the same time.

We refer to this observation as the absence of unreacha-
bility confluence.

Observation 2 (Absence of Unreachability Confluence). For a program 𝑝 , an initial state 𝜎 , and a

final state 𝜏 , we have that

𝜏 is unreachable by any computation of 𝑝 iff J𝑝K−1 (𝜏) = ∅ , but

𝑝 can diverge on input 𝜎 ����XXXXiff J𝑝K(𝜎) = ∅ . △

Observation 2 in particular enables us to characterize unreachability in a relational setting by

testing equality to the empty set. This is not possible for divergence, weakening the previously

discussed duality of divergence and unreachability (see e.g. Figure 2). We will see how this intrinsic

difference between forward and backward analysis affects program logics in Sections 5 and 6.

Another direct consequence of Observation 2 is that the demonic weakest pre is not truly dual to

demonic strongest post, after all. For an illustration, see [Verscht and Kaminski 2024, Appendix A].

3.4 Relating Predicate Transformers
Table 1 summarizes the sets of states captured by the eight predicate transformers defined in the

previous section. As indicated before, the transformers are closely related. The remainder of this

section is dedicated to formalizing these relations.

First, we observe that we can order wp and sp transformers by set inclusion. This can also be

seen in Figures 1 and 3, respectively.

Theorem 3.7 (Ordering on Predicate Transformers). For all programs 𝑝 and predicates 𝑐, 𝑏,
the following inclusions hold:

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 60. Publication date: January 2025.

A Taxonomy of Hoare-Like Logics 60:11

awpJ𝑝K(𝑐) awlpJ𝑝K(𝑐)

dwpJ𝑝K(𝑐) dwlpJ𝑝K(𝑐)

⊆

⊆ ⊆

⊆

asp J𝑝K(𝑏) aslpJ𝑝K(𝑏)

dsp J𝑝K(𝑏) dslpJ𝑝K(𝑏)

⊆

⊆ ⊆

⊆

Proof. This follows directly from Definitions 3.1 to 3.6. □

It was hinted at before that the transformers are in contrapositive relation.

Theorem 3.8 (Contrapositive Transformers). For all programs 𝑝 and predicates 𝑏, 𝑐 , we have:

(1) awpJ𝑝K(𝑐) = dwlpJ𝑝K(𝑐)
(2) dwpJ𝑝K(𝑐) = awlpJ𝑝K(𝑐)

(3) asp J𝑝K(𝑏) = dslpJ𝑝K(𝑏)
(4) dsp J𝑝K(𝑏) = aslpJ𝑝K(𝑏)

Proof. Properties (1) to (3) are folklore knowledge. For the proof of (4), see [Verscht and Kaminski

2024, Appendix E.1]. □

4 A Taxonomy of Hoare-Like Program Logics
Arguably the best known program logic is Hoare logic [Hoare 1969]. Its central notion are triples
⟨𝑏 ⟩ 𝑝 ⟨ 𝑐 ⟩ consisting of a program 𝑝 , a precondition 𝑏, and a postcondition 𝑐 . Such triples have

also been called asserted programs in various literature. To give meaning to a triple, it must be

exegeted when a triple is considered valid and when it is not. For the standard partial correctness

interpretation of Hoare logic, it is well known that this exegesis can be captured in terms of

predicate transformers, namely

⟨𝑏 ⟩ 𝑝 ⟨ 𝑐 ⟩ is valid for partial corr. iff 𝑏 ⊆ dwlpJ𝑝K(𝑐) iff asp J𝑝K(𝑏) ⊆ 𝑐 .

Another program logic that somewhat recently (re)gained attention under the name incorrectness
logic [O’Hearn 2019] features triples that are exegeted through

⟨𝑏 ⟩ 𝑝 ⟨ 𝑐 ⟩ is valid for incorr. iff 𝑐 ⊆ asp J𝑝K(𝑏) .

We see above that for some exegeses we overapproximate the result of a predicate transformer,

for others we underapproximate it. In total, we have defined 8 different predicate transformers,

which we can each over- and underapproximate, yielding potentially 2 · 8 = 16 different exegeses

of triples and thus program logics. Some of these will coincide, as we have already seen above for

partial correctness. Others will imply others, yet others will be contrapositives of each other. In the

following, we give an overview of all 16 possibilities and study their relationships, thus yielding a

taxonomy of predicate transformer definable program logics.

4.1 Program Logics
As described just above, there are 16 possible exegeses of triples ⟨𝑏 ⟩ 𝑝 ⟨ 𝑐 ⟩ that can be obtained

by over- or underapproximating each of the 8 predicate transformers defined in Section 3. A full

overview of these is provided in Figure 5. The “colloquial terms” (broadly interpreted) of these

exegeses/logics (some more, some less common) are provided immediately below the individual

exegeses. Some of these names are more common than others. We would like to mention, however,

that these names are not necessarily accurately chosen, especially the attribution of being a

correctness or an incorrectness logic2. For example, incorrectness logic was prior to [O’Hearn 2019]

2
But we acknowledge that these attributes made sense for the individual originally intended purposes of those logics.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 60. Publication date: January 2025.

60:12 Lena Verscht and Benjamin Lucien Kaminski

𝑏 ⊆ awpJ𝑝K(𝑐)
Lisbon logic (angelic tot. corr.)

𝑏 ⊆ dwpJ𝑝K(𝑐)
Hoare logic (total correctness)

𝑏 ⊆ awlpJ𝑝K(𝑐)
angelic partial correctness

dwpJ𝑝K(𝑐) ⊆ 𝑏 dwlpJ𝑝K(𝑐) ⊆ 𝑏

awlpJ𝑝K(𝑐) ⊆ 𝑏𝑏 ⊆ dwlpJ𝑝K(𝑐)
Hoare logic (partial correctness)

awpJ𝑝K(𝑐) ⊆ 𝑏
partial incorrectness

asp J𝑝K(𝑏) ⊆ 𝑐
Hoare logic (partial correctness)

aslpJ𝑝K(𝑏) ⊆ 𝑐

dslpJ𝑝K(𝑏) ⊆ 𝑐 dsp J𝑝K(𝑏) ⊆ 𝑐

𝑐 ⊆ dslpJ𝑝K(𝑏)
partial incorrectness

𝑐 ⊆ dsp J𝑝K(𝑏)
demonic incorrectness

𝑐 ⊆ aslpJ𝑝K(𝑏)
angelic partial incorrectness

𝑐 ⊆ asp J𝑝K(𝑏)
incorrectness logic

Fig. 5. A taxonomy of predicate transformer-based program logics. Black arrows are simple implications,
green dotted arrows are contrapositive relations, and orange two-sided arrows are Galois connections.

introduced by de Vries and Koutavas [2011] under the name reverse Hoare logic and was intended

for proving that all good things can happen – arguably more of a correctness criterion.
Other attributions are being an over- or an underapproximate logic. For example, incorrectness

logic was attributed underapproximate and partial correctness overapproximate. But this also is not

entirely accurate since the supposedly overapproximate partial correctness can also be exegeted

via an underapproximation, namely of dwlp. Before we next provide intuitions and background on

the individual logics, let us first have a closer look at the structure of Figure 5.

The Implications. If we divide Figure 5 into four quadrants (i.e. horizontally and vertically in the

middle), we obtain four squares of implications. For example (top left quadrant), total correctness

implies partial correctness and the Lisbon logic exegesis. The latter two each imply angelic partial

correctness. For each quadrant, the respective implications stem entirely from the ordering of the

predicate transformers provided in Theorem 3.7.

The Contrapositions. If we divide Figure 5 vertically into two halves, then every exegesis in one

half has a mirrored contrapositive in the other half, indicated by green dotted arrows. For example,

partial correctness and partial incorrectness are contrapositive to each other, meaning that

⟨𝑏 ⟩ 𝑝 ⟨ 𝑐 ⟩ is valid for part. corr. iff

〈
𝑏
〉
𝑝
〈
𝑐
〉
is valid for part. incorr.

In that sense, an exegesis and its contrapositive are “equivalent” and one of the two halves could

be discarded. We would argue, however, that – depending on the proof objective – it may well

be more intuitive to annotate code in non-negated versions so that program proofs remain more

understandable. All contrapositions of exegesis in Figure 5 arise from the contrapositivities of the

predicate transformers described in Theorem 3.8.

The Equivalences. In the very center of Figure 5, we have a square of, respectively, two vertically

equivalent exegesis. For example, partial correctness can be exegeted equivalently through 𝑏 ⊆
dwlpJ𝑝K(𝑐) or asp J𝑝K(𝑏) ⊆ 𝑐 . Analogously, partial incorrectness can be exegeted in two equivalent

ways. The partial correctness equivalence stems from the very well-known Galois connection

𝑏 ⊆ dwlpJ𝑝K(𝑐) iff asp J𝑝K(𝑏) ⊆ 𝑐 .

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 60. Publication date: January 2025.

A Taxonomy of Hoare-Like Logics 60:13

The partial incorrectness equivalence stems from the much less well-known Galois connec-

tion [Zhang and Kaminski 2022]

awpJ𝑝K(𝑐) ⊆ 𝑏 iff 𝑐 ⊆ dslpJ𝑝K(𝑏) .

Note that such Galois connections are not only of theoretical interest: They allow to reason either

forward or backward through a program, whatever is more feasible. They even allow to reason

in both directions simultaneously: For example, ⟨𝑏 ⟩ 𝑝1 # 𝑝2 ⟨ 𝑐 ⟩ is valid for partial correctness if

asp J𝑝1K(𝑏) ⊆ dwlpJ𝑝2K(𝑐), meaning that we have done backward reasoning on 𝑝2 and forward

reasoning on 𝑝1. Analogous bidirectional reasoning can be performed for partial incorrectness.

In the following, we will discuss those logics of Figure 5 that have a colloquial name in more

detail. We will proceed more or less in (partial) order of popularity. As a running example, we use a

program 𝑝login which realizes some login procedure. The user must enter a password and is then

either granted access or not.

Hoare logic for partial correctness [Hoare 1969]. ⟨𝑏 ⟩ 𝑝 ⟨ 𝑐 ⟩ is valid for (demonic) partial correctness
iff 𝑏 ⊆ dwlpJ𝑝K(𝑐) or equivalently asp J𝑝K(𝑏) ⊆ 𝑐 . This is the standard notion of partial correctness,

stating that all computations of 𝑝 started in 𝑏 must either diverge or terminate in 𝑐 .

For example, validity of the partial correctnessHoare triple ⟨ pwd incorrect ⟩ 𝑝login ⟨ access denied ⟩
expresses the following: Should the user provide the wrong password, the login will fail by either

terminating in a state where the user is denied access, or diverge. This is a correctness property as

it expresses behavior we would expect from a login procedure (except perhaps the divergence).

The contrapositive triple awpJ𝑝K(𝑐) ⊆ 𝑏 was discussed by Cousot et al. [2013] under the name

necessary precondition. The intuition for this is that 𝑏 necessarily has to hold for computation to

terminate in 𝑐 . All other computation is guaranteed to either diverge or terminate outside of 𝑐 .

Hoare logic for total correctness [Hoare 1969]. ⟨𝑏 ⟩ 𝑝 ⟨ 𝑐 ⟩ is valid for (demonic) total correctness iff
𝑏 ⊆ dwpJ𝑝K(𝑐). This is the standard notion of total correctness, stating that all computations of 𝑝

started in 𝑏 must terminate in 𝑐 . This can be classically used to specify correctness properties of

the program. For example, the triple ⟨ pwd correct ⟩ 𝑝login ⟨ access granted ⟩ expresses that if a user
enters the correct password, access is definitely granted.

Incorrectness logic [de Vries and Koutavas 2011; O’Hearn 2019]. ⟨𝑏 ⟩ 𝑝 ⟨ 𝑐 ⟩ is valid for (angelic)
incorrectness iff 𝑐 ⊆ asp J𝑝K(𝑏). This exegesis was popularized by O’Hearn [2019] under the name

incorrectness logic and ensures that all states in 𝑐 must be reachable from some state in 𝑏.
Why incorrectness? O’Hearn thought of 𝑐 as a set of bugs whose (true positive) presence was

supposed to be proved. For example, the triple ⟨ true ⟩ 𝑝login ⟨ error ⟩ expresses that the error state
is reachable, thus proving the existence of some bug.

As mentioned before, incorrectness logic was described some 8 years earlier by de Vries and

Koutavas [2011] under the name reverse Hoare logic. Contrary to O’Hearn, de Vries and Koutavas

thought of 𝑐 as a set of desirable states who should all be reachable, thus exemplifying that neither

the attribute incorrectness nor correctness is entirely accurate for this logic.

Lisbon logic. ⟨𝑏 ⟩ 𝑝 ⟨ 𝑐 ⟩ is valid for angelic total correctness iff 𝑏 ⊆ awpJ𝑝K(𝑐), stating that from
all states in 𝑏, there must exist a computation of 𝑝 terminating in 𝑐 . Regarding its name, Zilberstein

et al. [2023] describe that such triples have first been described in [Möller et al. 2021] as backwards
under-approximate triples and been discussed as a possible foundation for incorrectness reasoning
during a meeting in Lisbon, hence Lisbon logic. Recently, a proof system for the logic was developed

[Raad et al. 2024]. However, underapproximating angelic weakest pre(conditions) has been studied

much earlier, for example by Hoare [1978] as possible correctness and later by McIver and Morgan

[2005]. Another name for Lisbon logic is sufficient incorrectness logic, due to Ascari et al. [2024].

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 60. Publication date: January 2025.

60:14 Lena Verscht and Benjamin Lucien Kaminski

As an example, consider again the triple ⟨ pwd correct ⟩ 𝑝login ⟨ access granted ⟩. Exegeted as

angelic total correctness, this expresses that with a correct password, it is always possible to get

access – indeed a correctness property. On the other hand, if ⟨ pwd = 1234 ⟩ 𝑝login ⟨ access granted ⟩
is valid for angelic total correctness, the password “1234” can always result in access. This is likely

incorrect behavior. Again, neither correctness nor incorrectness seem appropriate attributes.

Partial incorrectness [Zhang and Kaminski 2022]. ⟨𝑏 ⟩ 𝑝 ⟨ 𝑐 ⟩ is valid for (demonic) partial incor-
rectness iff 𝑐 ⊆ dslpJ𝑝K(𝑏), requiring all states in 𝑐 to be either unreachable or exclusively reachable

from 𝑏. In other words, computation starting in 𝑏 may only terminate in 𝑐 , or:
〈
𝑏
〉
𝑝
〈
𝑐
〉
is valid

for demonic partial correctness. This is not surprising because of contrapositivity.

Angelic partial correctness. ⟨𝑏 ⟩ 𝑝 ⟨ 𝑐 ⟩ is valid for angelic partial correctness iff 𝑏 ⊆ awlpJ𝑝K(𝑐),
stating that for all states in 𝑏, there must exist either a computation of 𝑝 terminating in 𝑐 , or

the possibility of 𝑝 to diverge. As the name suggests, this is very closely related to angelic total

correctness, the only difference being that divergence is deemed acceptable.

This logic can be used to identify states from which divergence is possible by choosing the post

to be empty. Raad et al. [2024] emphasize the relevance of reasoning about divergence, defining

an under-approximate non-termination logic which aligns with the aforementioned angelic partial

correctness triple ⟨𝑏 ⟩ 𝑝 ⟨ false ⟩.

Demonic incorrectness. ⟨𝑏 ⟩ 𝑝 ⟨ 𝑐 ⟩ is valid for demonic incorrectness iff 𝑐 ⊆ dsp J𝑝K(𝑏), stating
that all final states in 𝑐 must be exclusively reachable from the states in 𝑏. In particular, all states

in 𝑐 must be reachable. If we waive this requirement, we end up with partial incorrectness. This is

dual to going from total to partial correctness by waiving the termination requirement.

To the best of our knowledge, demonic incorrectness logic has not been described in the literature

before. It can be used, for example, to restrict the initial states from which errors can occur. This is

similar to the motivation for outcome logic and sufficient incorrectness logic [Ascari et al. 2024;

Zilberstein et al. 2023]. If ⟨ pwd incorrect ⟩ 𝑝login ⟨ error ⟩ is valid for demonic incorrectness, errors

can only be reached when entering the wrong password, possibly making a bug at hand less critical.

Angelic partial incorrectness. ⟨𝑏 ⟩ 𝑝 ⟨ 𝑐 ⟩ is valid for angelic partial incorrectness iff 𝑐 ⊆ aslpJ𝑝K(𝑏),
stating that all states in the 𝑐 are either unreachable or reachable from a state in 𝑏.

To the best of our knowledge, this is also a novel logic. If ⟨ pwd incorrect ⟩ 𝑝login ⟨ access granted ⟩
is valid for angelic partial incorrectness, we know that all states where access was granted are either

entirely unreachable or can be reached with an incorrect password, which is definitely undesired.

4.2 Related Taxonomies
Several other works have developed taxonomies for program logics. Both Zhang and Kaminski

[2022] and Ascari et al. [2024] concentrate on logics based on angelic semantics, which align with

our awp and asp transformers. Cousot [2024] presents a framework that defines program logics by

applying various abstraction functions to a collecting semantics. Even though the semantics in this

paper in essence is also angelic, divergence is explicitly represented by the symbol ⊥. In this way,

demonic variants of correctness logics are expressible as well.

The abstract interpretation approach offers a versatile and expressive structure for capturing

a wide range of logics. Many of these logics, including several if not all of the prominent ones,

are organized in a 4-dimensional cube-like schema (see [Cousot 2024, Figure 3]). At first glance,

this cube does not appear to resemble our taxonomy in Figure 5. However, a closer inspection

reveals that the logics occupying the upper half of the cube once again correspond to those defined

using the awp and asp transformers, as well as their contrapositives. The main distinction to the

corresponding fragment of Figure 5 lies in how the logics are arranged.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 60. Publication date: January 2025.

A Taxonomy of Hoare-Like Logics 60:15

When comparing the cube to our planar diagram, the sets at the cube’s upper corners correspond

to awp, asp, dwlp, and dslp for a concrete pre- or postcondition. The cube’s arrangement emphasizes

the symmetry between logics through set inclusions, aligning with the close connection between

Hoare logic and incorrectness logic. This particular symmetry is less immediate in our diagram,

which instead emphasizes the implications and contrapositives across different logics.
The logics in the lower half of Cousot’s cube are more challenging to align with our taxonomy.

These logics intuitively mirror their counterparts in the upper half but introduce additional con-

ditions related to termination behavior, allowing, for instance, the expression of demonic partial
correctness. However, since the interpretation of these lower-half logics depends on whether non-

termination (represented by ⊥) is included in the postcondition, they are somewhat incompatible

with our logics. In particular, we do not consider incorrectness logics with termination constraints.

Notably absent from Cousot’s cube are the two novel predicate transformers we proposed -

demonic strongest post and angelic strongest liberal post - and the corresponding logics. However,

the logics represented in the cube are only a subset of what is possible within the framework of

abstract interpretation. We conjecture that these new logics could be accommodated by extending

the framework to include an additional symbol representing unreachability, dual to⊥ for divergence.

Cousot additionally introduces what he calls Hoare incorrectness logic, which is included in the

cube but does not neatly fit within its structure. This logic represents the negation of a standard

Hoare triple. Specifically, ⟨𝑏 ⟩ 𝑝 ⟨ 𝑐 ⟩ is valid for Hoare incorrectness if it is not valid for partial

Hoare logic. Intuitively, this means that there exists an execution of 𝑝 starting in 𝑏 and terminating

outside of 𝑐 . Unlike traditional Hoare logic or incorrectness logic, Hoare incorrectness logic does

not require conditions to hold for all states in the precondition or postcondition; it only requires the

existence of a single execution path violating the postcondition. In our framework, this corresponds

to the condition awpJ𝑝K(𝑐) ∩ 𝑏 ≠ ∅ [Verscht and Kaminski 2023]. So, while in principle expressible

in our framework, Hoare incorrectness logic does not align with the structure of the other logics —

just as it does not fit within the cube.

4.3 On the Impact of Additional Assumptions
It is well known that under the assumption of program termination (say on all initial states), standard
partial and total correctness coincide, or rather collapse to one notion. More symbolically,

termination implies partial corr. ⇐⇒ total corr.

In the following, we will inspect what other of the 16 logics from Figure 5 collapse under the

assumption of termination, and we will explore three more natural assumptions which will make

yet other logics collapse, namely reachability, determinism, and reversibility.

4.3.1 Termination. Liberality in weakest precondition transformers is about whether they deem

nontermination acceptable behavior or not. If 𝑝 terminates on all states, then dwlp and dwp coincide
for all postconditions. The same goes for awlp and awp. Formally, we have the following theorem:

Theorem 4.1 (Termination Collapse). Let 𝑝 be a program that must terminate on all initial
states. Then

dwpJ𝑝K(𝑐) = dwlpJ𝑝K(𝑐) and awpJ𝑝K(𝑐) = awlpJ𝑝K(𝑐) .

Proof. See [Verscht and Kaminski 2024, Appendix E.2.1]. □

If two transformers t1 and t2 coincide, then two logics whose definitions are equal up to whether

their definition invokes t1 or t2 immediately collapse into a single logic. Hence, for instance, partial

and total correctness collapse to one notion. Logics that collapse are illustrated by the dashed boxes

in Figure 6. We see that in the upper half, logics collapse along a horizontal axis. The bottom half

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 60. Publication date: January 2025.

60:16 Lena Verscht and Benjamin Lucien Kaminski

𝑏 ⊆ awpJ𝑝K(𝑐)

𝑏 ⊆ dwpJ𝑝K(𝑐)

𝑏 ⊆ awlpJ𝑝K(𝑐) dwpJ𝑝K(𝑐) ⊆ 𝑏 dwlpJ𝑝K(𝑐) ⊆ 𝑏

awlpJ𝑝K(𝑐) ⊆ 𝑏𝑏 ⊆ dwlpJ𝑝K(𝑐) awpJ𝑝K(𝑐) ⊆ 𝑏

asp J𝑝K(𝑏) ⊆ 𝑐aslpJ𝑝K(𝑏) ⊆ 𝑐

dslpJ𝑝K(𝑏) ⊆ 𝑐 dsp J𝑝K(𝑏) ⊆ 𝑐

𝑐 ⊆ dslpJ𝑝K(𝑏) 𝑐 ⊆ dsp J𝑝K(𝑏)

𝑐 ⊆ aslpJ𝑝K(𝑏) 𝑐 ⊆ asp J𝑝K(𝑏)

Fig. 6. Collapse of program logics under assumptions regarding totality and partiality. Blue dashed boxes
enclose logics that collapse (i.e. the implications become equivalences) under termination. Blue solid boxes
enclose logics that collapse under reachability.

of the logics is unaffected by termination, as strongest post based logics are incapable of reasoning

about termination or divergence.

For the purpose of logics collapsing, note that we can loosen the requirement to computations

starting in initial states of interest, i.e. those satisfying the precondition 𝑏. Concretely, if a program

𝑝 terminates on all initial states satisfying 𝑏, then 𝑏 ⊆ dwpJ𝑝K(𝑐) ⇐⇒ 𝑏 ⊆ dwlpJ𝑝K(𝑐). The same

holds for the other wp based logics.

We can moreover use the predicate transformers to express termination properties, which follows

directly from Theorem 4.1.

Corollary 4.2 (Expressing Termination Properties). A program 𝑝 must terminate on all
initial states3 if and only if

dwpJ𝑝K(true) = true or equivalently dwlpJ𝑝K(false) = false.

Theorem 4.1 and Corollary 4.2 together yield precisely the well-known technique of proving partial

correctness and proving termination separately in order to obtain total correctness.

4.3.2 Reachability. Forweakest preconditions, we saw that – under the assumption of termination –

liberal and non-liberal weakest preconditions coincide. This immediately raises the questionwhether

such a criterion can be found for strongest postcondition transformers to coincide. The answer is

yes: reachability. If all (final) states are reachable from some initial state by some computation of 𝑝 ,

then liberal and non-liberal strongest postconditions coincide:

Theorem 4.3 (Reachability Collapse). Let all final states be reachable by some computation of
a program 𝑝 . Then

asp J𝑝K(𝑏) = aslpJ𝑝K(𝑏) and dsp J𝑝K(𝑏) = dslpJ𝑝K(𝑏) .
3
One could be a bit more fine-grained here and distinguish between may and must termination. While must implies may

termination, we could only check for may termination, which is the case if and only if

awpJ𝑝K(true) = true or equivalently awlpJ𝑝K(false) = false.

In that case, only the angelic but not necessarily the demonic weakest precondition transformers would coincide (cf. Theo-

rem 4.1) and in Figure 6 only the dashed boxes containing angelic transformers would be present.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 60. Publication date: January 2025.

A Taxonomy of Hoare-Like Logics 60:17

Proof. See [Verscht and Kaminski 2024, Appendix E.2.2]. □

As in the case for termination, coincidence of transformers causes the associated logics to collapse.

Logics that collapse for reachability are illustrated by the solid boxes in Figure 6. The top half of

the logics is unaffected by reachability.

Reachability of all final states is a very strong (and perhaps sometimes even undesired) assumption.

As a silver lining, for the collapse of logics, we can loosen this requirement to the final states

satisfying 𝑐 , similar to what we have seen for termination.

In Theorem 4.1, we had to assume that all computations of 𝑝 terminate. In contrast to this,

Theorem 4.3 only requires a final state to be reachable by some computation. Again, this difference

is caused by Observation 2: A final state can either be unreachable or not, but never both.

As with termination, we can express reachability in terms of predicate transformers:

Corollary 4.4 (Expressing Reachability Properties). All final states are reachable from some
initial state by some computation of program 𝑝 , if and only if

dsp J𝑝K(true) (𝜏) = true or equivalently dslpJ𝑝K(false) (𝜏) = false or equivalently

asp J𝑝K(true) (𝜏) = true or equivalently aslpJ𝑝K(false) (𝜏) = false.

Proof. See [Verscht and Kaminski 2024, Appendix E.2.3]. □

This interestingly differs from the analogous corollary for termination (Corollary 4.2), where we

had to distinguish between may and must termination (and opted for must as it is more general).

This is again rooted in Observation 2, as the existence of a path to a final state is equivalent to the

final state being reachable.

As with total correctness, Theorem 4.3 and Corollary 4.4 together yield a technique for proving

incorrectness by proving angelic partial incorrectness and reachability.

4.3.3 Determinism. So far, we have seen how to produce “horizontal collapses” in Figure 5 by

assuming that total and partial predicate transformers coincide. Now, we will see that we can

get similar results for angelic and demonic transformers, thus producing “vertical collapses”. For

weakest preconditions, angelic and demonic weakest preconditions differ in their treatment of

explicit nondeterministic branching of the program. Therefore, it is evident that when restricting

to deterministic programs (even syntactically), they should be equivalent.
4

Theorem 4.5 (Determinism Collapse). If program 𝑝 is deterministic then

awpJ𝑝K(𝑐) = dwpJ𝑝K(𝑐) and awlpJ𝑝K(𝑐) = dwlpJ𝑝K(𝑐) .

Proof. See [Verscht and Kaminski 2024, Appendix E.2.4]. □

In Figure 7, we now see what we were expecting: The top row of our taxonomy collapses into the

second but top row under the assumption of determinism, symbolized by the blue dashed boxes.

As before, for the collapse it suffices to require determinism of computation started in 𝑏.

Ascari et al. [2024, Prop. 5.5] established that angelic total correctness (their sufficient incorrect-

ness logic) and demonic partial correctness (Hoare logic) are equivalent for deterministic programs

which terminate. By looking at the bigger picture, we see why this holds: Combining Theorems 4.1

and 4.5, all four logics in the upper left (as well as the upper right) quadrat collapse, including the

two logics mentioned above.

4
Of course, determinism is also a semantic property, but we will not go into this as syntactic determinism obviously implies

semantic determinism and semantic determinism is difficult to reason about.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 60. Publication date: January 2025.

60:18 Lena Verscht and Benjamin Lucien Kaminski

𝑏 ⊆ awpJ𝑝K(𝑐)

𝑏 ⊆ dwpJ𝑝K(𝑐)

𝑏 ⊆ awlpJ𝑝K(𝑐) dwpJ𝑝K(𝑐) ⊆ 𝑏 dwlpJ𝑝K(𝑐) ⊆ 𝑏

awlpJ𝑝K(𝑐) ⊆ 𝑏𝑏 ⊆ dwlpJ𝑝K(𝑐) awpJ𝑝K(𝑐) ⊆ 𝑏

asp J𝑝K(𝑏) ⊆ 𝑐aslpJ𝑝K(𝑏) ⊆ 𝑐

dslpJ𝑝K(𝑏) ⊆ 𝑐 dsp J𝑝K(𝑏) ⊆ 𝑐

𝑐 ⊆ dslpJ𝑝K(𝑏) 𝑐 ⊆ dsp J𝑝K(𝑏)

𝑐 ⊆ aslpJ𝑝K(𝑏) 𝑐 ⊆ asp J𝑝K(𝑏)

Fig. 7. Collapse of program logics under certain assumptions, part 2. Blue dashed boxes enclose logics that
collapse (i.e. the implications become equivalences) under determinism. Blue solid boxes enclose logics that
collapse under reversibility.

4.3.4 Reversibility. Finally, we are missing to collapse the bottom row of Figure 7 into the second

but last row. This can be achieved by ensuring “backward determinism” of 𝑝 , meaning that every

final state could have only been reached from (at most) one initial state. In other words, the

computation of the program is reversible. This is of interest, for example, in compression algorithms

or quantum computations. Ascari et al. [2024] observed that under reversibility, incorrectness logic

implies demonic partial incorrectness. This can be seen as a consequence of the following theorem:

Theorem 4.6 (Reversibility Collapse). It 𝑝 is a reversible program (i.e. J𝑝K−1 (𝜏) is either a
singleton or the empty set for all 𝜏 ∈ Σ), then

asp J𝑝K(𝑏) = dsp J𝑝K(𝑏) and aslpJ𝑝K(𝑏) = dslpJ𝑝K(𝑏).

Proof. See [Verscht and Kaminski 2024, Appendix E.2.5]. □

Analogously to the other cases, reversibility does not effect the top half of the logics for the same

reason that (non)determinism has no effect on the lower half. Also, we can again weaken the

requirement to reversibility of computation terminating in 𝑐 .

4.4 Symmetries and Asymmetries
Program correctness and incorrectness are two sides of the same coin.

— Peter O’Hearn [2019]

Figure 5 is at first glance full of symmetry and duality: The upper half contains all weakest

precondition based logics, the lower half dually contains all strongest postcondition based logics.

Also, the left half is a contrapositive mirroring of the right half. The assumptions discussed in the

preceding section also act completely symmetrically. On the top left we have “correctness logics”,

on the bottom right we have “incorrectness logics”. Indeed, this all seems like two opposite sides of

a (multidimensional) coin.

Two sides of the same coin? Not quite. However, when taking a closer look, this fully symmetric

picture starts to become a bit brittle. First of all, correctness and incorrectness are not really at

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 60. Publication date: January 2025.

A Taxonomy of Hoare-Like Logics 60:19

opposite sides of the “coin” represented by Figure 5. If total correctness (second row left), was truly

on the opposite side of incorrectness logic (bottom row right), we should either expect the standard

notion of program correctness to be Lisbon logic (top row left), or alternatively the standard notion

of incorrectness to be demonic incorrectness (third row right). It seems off that the current standard

notions of correctness and incorrectness are not really at opposite sides of Figure 5.

Missing Galois connections. Amongst the logics in Figure 5, there is essentially only one Galois
connection (there are two, but one is the contrapositive of the other). In particular, since there is a

Galois connection amongst the two transformer-based definitions of partial correctness, one might

expect more Galois connections, e.g. between angelic partial correctness and the contrapositive

of angelic partial incorrectness. Such Galois connection does not exists, however: Assume that

⟨𝑏 ⟩ 𝑝 ⟨ 𝑐 ⟩ is valid for angelic partial correctness, i.e. 𝑏 ⊆ awlpJ𝑝K(𝑐). So all states in 𝑏 must either

have a diverging path or a path to 𝑐 . Let 𝜏 ∈ 𝑐 be a final state which is exclusively reachable from 𝑏 .

This does not violate the assumption of angelic partial correctness. However, the contrapositive

of angelic partial incorrectness, dsp J𝑝K(𝑏) ⊆ 𝑐 requires all states that are exclusively reachable

from 𝑏 to be included in 𝑐 . This implies that 𝜏 ∈ 𝑐 , which contradicts the previous assumption.

Hence, ⟨𝑏 ⟩ 𝑝 ⟨ 𝑐 ⟩ is not valid for the contrapositive of angelic partial incorrectness. Similar

counterexamples exist for all other combinations of triples (see [Verscht and Kaminski 2024,

Appendix B] for a collection). We conclude that there is (essentially) only one Galois connection

between the logics we considered. We can, however, force such Galois connections by additional

assumptions. E.g., the above discussed Galois connection is valid for programs that are both

deterministic and reversible.

Missing Asymmetries. We discussed an intrinsic asymmetry of forward and backward analyses in

Observation 2. This asymmetry is not (yet) visible in Figure 5. To gain more insights on the logics’

relationships and (a)symmetries, we will now take another look at program properties from the

perspective of Kleene algebras.

5 Kleene Algebra with Top and Tests
Kleene Algebra with Tests (KAT). Introduced by Kozen [1997], KAT is an algebraic approach to

specifying and reasoning about program properties. For us, it will suffice to describe KAT at a rather

high level. For reference, the formal definitions we require can be found in [Verscht and Kaminski

2024, Appendix C].

KAT terms are generalized regular expressions over a two-sorted alphabet consisting of (i) pro-
grams (𝑝, 𝑞, . . .) and (ii) tests (𝑏, 𝑐, . . .). We interpret these symbols as relations: A program 𝑝 relates

(or maps) initial states to final states through its execution. Initial states on which 𝑝 must diverge are
not related to any final states. Dually, unreachable final states are not related to any initial states.

A test 𝑏 maps initial states that satisfy 𝑏 to themselves. All other states are not contained in the

relation. Hence, tests act as filters. Testing for false (the empty relation) is denoted by 0 and is the

least element in the lattice of relations (ordered by set inclusion).

Composing symbols corresponds to composing relations. For example, the term 𝑏𝑝𝑞𝑐 intuitively

means: First test for 𝑏, then execute 𝑝 , then execute 𝑞, and finally test for 𝑐 . Executions that fail to

satisfy 𝑏 initially or 𝑐 finally are filtered out and do not become part of the resulting relation.

Kleene Algebra with Top and Tests (TopKAT). In TopKAT [Zhang et al. 2022], an additional ⊤
element (the universal relation relating all states with each other) is added to KAT. Notice the
difference to the identity relation, denoted 1, relating every state to itself. ⊤ can be used to “select”

the domain or codomain of a relation, as the following example illustrates.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 60. Publication date: January 2025.

60:20 Lena Verscht and Benjamin Lucien Kaminski

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

𝑏 𝑝 𝑐

(a) Illustration of a TopKAT
term 𝑏𝑝𝑐 . The resulting re-
lation is highlighted in bold
red.

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

⊤ 𝑏 𝑝 𝑐

(b) Adding ⊤ to the left-hand side of
the term 𝑏𝑝𝑐 from Figure 8a, effec-
tively selecting the codomain of the
underlying relation.

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

⊤𝑏 𝑝 𝑐

(c) Adding ⊤ to the right-hand side
of the term 𝑏𝑝𝑐 from Figure 8a, ef-
fectively selecting the domain of the
underlying relation.

Fig. 8. Using ⊤ to select the codomain (b) or the domain (c) of a TopKAT term 𝑏𝑝𝑐 .

Example 5.1 (⊤ as (Co)domain Selector). Consider a precondition 𝑏, a program 𝑝 , and a postcon-

dition 𝑐 over a state space of five states Σ = {1, 2, 3, 4, 5}, where

𝑏 = {(1, 1), (2, 2), (3, 3)},
𝑝 = {(1, 1), (2, 2), (3, 2), (4, 3), (4, 4)}, and

𝑐 = {(2, 2), (3, 3), (4, 4)}.

As described above, the KAT term 𝑏𝑝𝑐 corresponds to the composition of the underlying relations,

in this example being

𝑏𝑝𝑐 = {(2, 2), (3, 2)}.
This is illustrated in Figure 8a. The initial states satisfying 𝑏 are green, the final states satisfying 𝑐

are blue. Nondeterministic choices in 𝑝 are visualized by a square and divergence by a spiral. The

composed relation 𝑏𝑝𝑐 is highlighted in red: We can see that the pairs in the relation correspond to

the paths through the graph, originating in either initial state 2 or 3 and leading to final state 2.

Intuitively, these are the executions of 𝑝 starting in 𝑏 and terminating in 𝑐 .

The effect of appending ⊤ (i.e. the universal relation) on the left of 𝑏𝑝𝑐 is visualized in Figure 8b

and yields the relation

⊤𝑏𝑝𝑐 = {(1, 2), (2, 2), (3, 2), (4, 2), (5, 2)} = {(𝜎, 2) | 𝜎 ∈ Σ}.

Whereas in 𝑏𝑝𝑐 only initial states 2 and 3 were related to final state 2, in ⊤𝑏𝑝𝑐 all initial states are
related to 2. Appending ⊤ on the left thus in some sense erases the information about the initial

states and leaves only information about the final states – or in other words: the codomain.
Dually, the effect of appending ⊤ on the right is visualized in Figure 8c and yields the relation

𝑏𝑝𝑐⊤ = {(2, 𝜏), (3, 𝜏) | 𝜏 ∈ Σ},

Whereas in 𝑏𝑝𝑐 initial states 2 and 3 were related only to final state 2, in ⊤𝑏𝑝𝑐 initial states 2 and 3

are related to all final states. Appending ⊤ on the right thus erases the information about the final

states and leaves only information about the initial states – or in other words: the domain. △

Aswe have seen, appending⊤ to the right (left) of any KAT term amounts to selecting the (co)domain

of the underlying relation. In particular, for any two KAT terms 𝑠 and 𝑡 , we have that

⊤𝑠 = ⊤𝑡 iff the codomains of 𝑠 and 𝑡 are equal, and

𝑠⊤ = 𝑡⊤ iff the domains of 𝑠 and 𝑡 are equal.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 60. Publication date: January 2025.

A Taxonomy of Hoare-Like Logics 60:21

For expressing incorrectness logic, an explicit comparison of codomains is necessary. Hoare logic,

on the other hand, can also be expressed without ⊤. For details, we refer to [Zhang et al. 2022].

TopKAT and Predicate Transformers. There is a close relation between TopKAT and predicate

transformers namely that some predicate transformers can be expressed as TopKAT terms. Let

us express, for instance, asp J𝑝K(𝑏) in TopKAT. Consider for this first the term 𝑏𝑝 = {(𝜎, 𝜏) | 𝜎 ∈
𝑏 and (𝜎, 𝜏) ∈ 𝑝} describing all executions of 𝑝 that start in 𝑏. As described above, appending ⊤ on

the left selects the codomain of that term, i.e.

⊤𝑏𝑝 = {(𝜎 ′, 𝜏) | 𝜎 ′ ∈ Σ and ∃ 𝑠𝑖𝑔𝑚𝑎 ∈ 𝑏 and (𝜎, 𝜏) ∈ 𝑝} .

Since asp J𝑝K(𝑏) is precisely the set of states reachable by executing 𝑝 on initial states satisfying 𝑏

and the codomain of 𝑏𝑝 is also precisely that set, we can morally equate asp J𝑝K(𝑏) and ⊤𝑏𝑝 .
Similarly, appending ⊤ on the right selects the domain and 𝑝𝑐⊤ hence describes the set of states

that can reach 𝑐:

𝑝𝑐⊤ = {(𝜎, 𝜏 ′) | 𝜏 ′ ∈ Σ and ∃ 𝑡𝑎𝑢 ∈ 𝑐 and (𝜎, 𝜏) ∈ 𝑝}.

The domain of 𝑝𝑐 is precisely the set awpJ𝑝K(𝑐). Notably, asp and awp are the only two transformers

that are directly expressible in a TopKAT term.

𝜎 𝜏b

𝑝1 = {(𝜎, 𝜏)}

𝜎 𝜏

𝑝2 = {(𝜎, 𝜏)}

The Relational Perspective and Divergence. The purely
relational perspective on programs introduces some lim-

itations, particularly in reasoning about divergence. An

initial state from which computation always diverges is

related to no final state, making it distinguishable from

states that lead to some final state. However, consider an

initial state 𝜎 from which the computation can nondeter-

ministically diverge or terminate in 𝜏 , as illustrated by the

top program 𝑝1 to our right. The relation corresponding

to 𝑝1 contains only the pair (𝜎, 𝜏).
Now, consider the bottom program 𝑝2 to our right which always terminates in 𝜏 when started

in 𝜎 . The relational representation of 𝑝2 is the same as the one of 𝑝1, making these two programs

relationally indistinguishable. Consequently, information about branching divergence is inevitably

lost in a relational perspective, as was already observed in Remark 1.

5.1 Expressing Program Logics in TopKAT
Let us now explore how to express the program properties / logics of Figure 5 in the equational

system of TopKAT.

Hoare Logic for Partial Correctness. Partial correctness requires that all computation started in 𝑏

can only terminate in 𝑐 . This can be expressed in KAT, for example, by 𝑏𝑝𝑐 = 0 or 𝑏𝑝𝑐 = 𝑏𝑝 . The first

equation intuitively states that there is no computation starting in 𝑏 and terminating outside of 𝑐 .

The latter compares all states in 𝑐 in which 𝑝 can terminate starting from 𝑏 to the states in which 𝑝

can terminate from 𝑏 at all. In general, the equations do not uniquely express partial correctness. In

fact, there are many more (in)equations characterizing partial correctness, in particular the TopKAT
equation ⊤𝑏𝑝𝑐 = ⊤𝑏𝑝 . We choose the latter as it aligns well with the equations for the other logics.

Partial Incorrectness. Partial incorrectness is contrapositive to partial correctness and thus imme-

diately both KAT and TopKAT expressible by negating the conditions: ⊤𝑏𝑝𝑐 = ⊤𝑏𝑝 . An equivalent

equation, however, is 𝑏𝑝𝑐⊤ = 𝑝𝑐⊤ and we will consider this latter one.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 60. Publication date: January 2025.

60:22 Lena Verscht and Benjamin Lucien Kaminski

Table 2. Overview of TopKAT expressible program logics.

angelic total correctness 𝑏 ⊆ awpJ𝑝K(𝑐) 𝑏𝑝𝑐⊤ = 𝑏⊤
demonic partial correctness 𝑏 ⊆ dwlpJ𝑝K(𝑐) ⊤𝑏𝑝𝑐 = ⊤𝑏𝑝
angelic total incorrectness 𝑐 ⊆ asp J𝑝K(𝑏) ⊤𝑏𝑝𝑐 = ⊤𝑐

angelic partial incorrectness 𝑐 ⊆ aslpJ𝑝K(𝑏) ⊤𝑏𝑝𝑐 = ⊤𝑝𝑐
demonic partial incorrectness 𝑐 ⊆ dslpJ𝑝K(𝑏) 𝑏𝑝𝑐⊤ = 𝑝𝑐⊤

??? ??? 𝑏𝑝𝑐⊤ = 𝑏𝑝⊤

Incorrectness Logic. Incorrectness logic requires that all states in 𝑐 be reachable from 𝑏. This

cannot be captured in a standard KAT equation, as it involves reasoning about the codomain of

relations. Given that overcoming this was a key motivation behind TopKAT, it is not surprising that
incorrectness logic is expressible in TopKAT [Zhang et al. 2022], namely by ⊤𝑏𝑝𝑐 = ⊤𝑐 . The left-
hand side of the equation selects all final states in 𝑐 reachable by executing 𝑝 on 𝑏. The right-hand

side selects all final states in 𝑐 .

Hoare Logic for Total Correctness and Angelic Partial Correctness. For total correctness, all com-

putation started in 𝑏 must terminate and do so in 𝑐 . This requires reasoning about branching

divergence, which, as argued earlier, is impossible. Thus, standard total correctness is inexpressible

both in KAT [von Wright 2002] and TopKAT. The same goes for angelic partial correctness.

Lisbon logic. Lisbon logic expresses that from all initial states in 𝑏, it is possible for 𝑝 to terminate

in 𝑐 . As this requires reasoning about the domain of a relation, Lisbon logic cannot be expressed in

KAT. However, it is indeed expressible in TopKAT and to the best of our knowledge a novel result:

Theorem 5.2 (Expressibility of Lisbon Logic (Angelic Total Correctness) in TopKAT).

⟨𝑏 ⟩ 𝑝 ⟨ 𝑐 ⟩ is a valid Lisbon triple / valid for angelic total correctness iff 𝑏𝑝𝑐⊤ = 𝑏⊤

Demonic Incorrectness. The novel logic demonic incorrectness requires all states in 𝑐 to be

exclusively reachable from𝑏. We can divide this into two requirements, namely partial incorrectness
(𝑏𝑝𝑐⊤ = 𝑝𝑐⊤) and reachability of all states in 𝑐 (⊤𝑐 = ⊤𝑝𝑐). These two cannot be expressed as a

single equation.

Angelic Partial Incorrectness. The second novel logic, angelic partial incorrectness, requires that

all states in post are either unreachable or can be reached from 𝑏. This is expressible in KAT by

𝑏𝑝𝑐 = 𝑝𝑐 and in TopKAT by the equivalent equation ⊤𝑏𝑝𝑐 = ⊤𝑝𝑐 , comparing all final states in 𝑐

reachable from 𝑏 to the reachable fragment of 𝑐 . This is somewhat surprising (and asymmetric),

since angelic partial correctness cannot be expressed. The root cause is, again, Observation 2. An

overview of the five TopKAT expressible program logics is given in Table 2. Their contrapositives

are of course also expressible by negation of all tests. All equations are syntactically very similar.

There are more equations following this pattern, one of which is shown in the sixth row of Table 2.

We will discuss this logic in the following section. While other equations also syntactically fit into

the scheme, we exclude them from further investigation as they would, for example, interpret the

precondition 𝑏 over final states or do other semantically nonsensical things.

5.2 The In-Between Logics
Table 2 shows that five of the six basic TopKAT equations directly correspond to a predicate

transformer-based logic, as outlined in Section 4. However, the sixth equation, 𝑏𝑝𝑐⊤ = 𝑏𝑝⊤, stands
apart. This equation expresses that, for all states in 𝑏, the program either always diverges, or there

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 60. Publication date: January 2025.

A Taxonomy of Hoare-Like Logics 60:23

𝑏 ⊆ awpJ𝑝K(𝑐)
𝑏𝑝𝑐⊤ = 𝑏⊤

Lisbon logic (angelic tot. corr.)

𝑏 ⊆ dwpJ𝑝K(𝑐)
Hoare logic (total correctness)

𝑏 ⊆ awlpJ𝑝K(𝑐)
angelic partial correctness

𝑏 ⊆ dwlpJ𝑝K(𝑐)
⊤𝑏𝑝𝑐 = ⊤𝑏𝑝
𝑏𝑝𝑐⊤ = 𝑝𝑐⊤

Hoare logic (partial correctness)

dwpJ𝑝K(𝑐) ⊆ 𝑏
dwlpJ𝑝K(𝑐) ⊆ 𝑏

𝑏𝑝𝑐⊤ = 𝑏⊤

awlpJ𝑝K(𝑐) ⊆ 𝑏

awpJ𝑝K(𝑐) ⊆ 𝑏

⊤𝑏𝑝𝑐 = ⊤𝑏𝑝
𝑏𝑝𝑐⊤ = 𝑝𝑐⊤
partial incorrectness

asp J𝑝K(𝑏) ⊆ 𝑐

⊤𝑏𝑝𝑐 = ⊤𝑏𝑝
𝑏𝑝𝑐⊤ = 𝑝𝑐⊤

Hoare logic (partial correctness)

aslpJ𝑝K(𝑏) ⊆ 𝑐

dslpJ𝑝K(𝑏) ⊆ 𝑐

⊤𝑏𝑝𝑐 = ⊤𝑐
dsp J𝑝K(𝑏) ⊆ 𝑐

⊤𝑏𝑝𝑐 = ⊤𝑝𝑐

𝑐 ⊆ dslpJ𝑝K(𝑏)
⊤𝑏𝑝𝑐 = ⊤𝑏𝑝
𝑏𝑝𝑐⊤ = 𝑝𝑐⊤
partial incorrectness

𝑐 ⊆ dsp J𝑝K(𝑏)
demonic incorrectness

𝑐 ⊆ asp J𝑝K(𝑏)
⊤𝑏𝑝𝑐 = ⊤𝑐
incorrectness logic

𝑐 ⊆ aslpJ𝑝K(𝑏)
⊤𝑏𝑝𝑐 = ⊤𝑝𝑐

angelic partial incorrectness

Fig. 9. The taxonomy presented in Figure 5 with corresponding TopKAT equations, if existing, in red.

exists a terminating path to 𝑐 . Interestingly, in Section 3.3, we discussed a set that characterizes

precisely such program states: awpJ𝑝K(𝑐) ∪ dwlpJ𝑝K(𝑐). Therefore, when the precondition 𝑏 is

chosen to underapproximate this set, we obtain:

𝑏𝑝𝑐⊤ = 𝑏𝑝⊤ iff 𝑏 ⊆ awpJ𝑝K(𝑐) ∪ dwlpJ𝑝K(𝑐)
In Section 3.3, we also examined the intersection awpJ𝑝K(𝑐) ∩ dwlpJ𝑝K(𝑐). Underapproximating

this intersection yields a logic which combines partial correctness Hoare logic and Lisbon logic.

Notably, this is a special case of outcome logic [Zilberstein et al. 2023], when restricted to traditional

assertions, i.e. predicates, and instantiated to the powerset monad. Similar to the equations for

demonic total incorrectness, we cannot give a single TopKAT equation for this, but a system of two:

𝑏𝑝𝑐 ≠ 0 and 𝑏𝑝𝑐 = 0.

6 A Taxonomy of Program Logics: Revisited
In Section 4, we presented a taxonomy of predicate transformer logics. Taking that picture and

highlighting the TopKAT expressible logics in red yields Figure 9, revealing an asymmetry which

was invisible before: The pattern of TopKAT expressible logics in the upper half is not symmetric

to the pattern in the lower half: This asymmetry is attributed to the fact that we cannot capture

branching divergence, whereas the dual concept in forward analyses, confluence of unreachability,

does not exist (see Observation 2).

6.1 Adding the In-Between Logics
Missing from Figure 9 are the logics that arise from unions and intersections of predicate transform-

ers, as discussed in Section 5.2. In Figure 10, we include these logics at the center of each quadrant.

For wp transformers, this yields indeed new logics. For sp transformers, the resulting logics are

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 60. Publication date: January 2025.

60:24 Lena Verscht and Benjamin Lucien Kaminski

𝑏 ⊆ awpJ𝑝K(𝑐)
𝑏𝑝𝑐⊤ = 𝑏⊤

Lisbon logic (angelic tot. corr.)

𝑏 ⊆ dwpJ𝑝K(𝑐)
Hoare logic (total correctness)

𝑏 ⊆ awlpJ𝑝K(𝑐)
angelic partial correctness

𝑏 ⊆ dwlpJ𝑝K(𝑐)
⊤𝑏𝑝𝑐 = ⊤𝑏𝑝
𝑏𝑝𝑐⊤ = 𝑝𝑐⊤

Hoare logic (partial correctness)

𝑏 ⊆ (awp ∩ dwlp)J𝑝K (𝑐)

𝑏 ⊆ (awp ∪ dwlp)J𝑝K (𝑐)
𝑏𝑝𝑐⊤ = 𝑏𝑝⊤

in-between logic

dwpJ𝑝K(𝑐) ⊆ 𝑏
dwlpJ𝑝K(𝑐) ⊆ 𝑏

𝑏𝑝𝑐⊤ = 𝑏⊤

awlpJ𝑝K(𝑐) ⊆ 𝑏

awpJ𝑝K(𝑐) ⊆ 𝑏

⊤𝑏𝑝𝑐 = ⊤𝑏𝑝
𝑏𝑝𝑐⊤ = 𝑝𝑐⊤
partial incorrectness

(awp ∪ dwlp)J𝑝K (𝑐) ⊆ 𝑏

(awp ∩ dwlp)J𝑝K (𝑐) ⊆ 𝑏

𝑏𝑝𝑐⊤ = 𝑏𝑝⊤

asp J𝑝K(𝑏) ⊆ 𝑐

⊤𝑏𝑝𝑐 = ⊤𝑏𝑝
𝑏𝑝𝑐⊤ = 𝑝𝑐⊤

Hoare logic (partial correctness)

aslpJ𝑝K(𝑏) ⊆ 𝑐

dslpJ𝑝K(𝑏) ⊆ 𝑐

⊤𝑏𝑝𝑐 = ⊤𝑐
dsp J𝑝K(𝑏) ⊆ 𝑐

⊤𝑏𝑝𝑐 = ⊤𝑝𝑐

(asp ∩ dslp)J𝑝K (𝑏) ⊆ 𝑐

⊤𝑏𝑝𝑐 = ⊤𝑝𝑐

(asp ∪ dslp)J𝑝K (𝑏) ⊆ 𝑐

𝑐 ⊆ dslpJ𝑝K(𝑏)
⊤𝑏𝑝𝑐 = ⊤𝑏𝑝
𝑏𝑝𝑐⊤ = 𝑝𝑐⊤
partial incorrectness

𝑐 ⊆ dsp J𝑝K(𝑏)
demonic incorrectness

𝑐 ⊆ asp J𝑝K(𝑏)
⊤𝑏𝑝𝑐 = ⊤𝑐
incorrectness logic

𝑐 ⊆ aslpJ𝑝K(𝑏)
⊤𝑏𝑝𝑐 = ⊤𝑝𝑐

angelic partial incorrectness

𝑐 ⊆ (asp ∪ dslp)J𝑝K (𝑏)
⊤𝑏𝑝𝑐 = ⊤𝑝𝑐

𝑐 ⊆ (asp ∩ dslp)J𝑝K (𝑏)

Fig. 10. The taxonomy including union and intersection logics and the TopKAT equations, if existing, in red.

equivalent to existing ones, see Section 3.3. Notably, neither intersections nor unions of any sp
transformers generate new logics, nor do any of the wp transformers, apart from awp and dwlp. In
the complete picture, the source of the earlier-mentioned asymmetry becomes clearer: The bold

connectives in the top half represent only implications, while those in the lower half represent

equivalences, a distinction once again driven by Observation 2.

6.2 Absence of Branching Divergence
In Section 4.3, we examined how assumptions on 𝑝 let our taxonomy partially collapse. With the

addition of union and intersection logics, we can now consider another assumption: The absence

of branching divergence. If we assume that branching divergence is not present, the taxonomy

becomes fully dual, as the bold implications in the upper half of the diagram turn into equivalences,

see Figure 11, where the logics added in the center collapse into the corners. Meanwhile, the bottom

half remains unchanged, as the logics within the blue dashed lines were already equivalent.

Theorem 6.1 (Branching Divergence Collapse). Let 𝑝 be a program and 𝑐 be a postcondition.
If computation of 𝑝 either always diverges or always terminates, we have

dwpJ𝑝K(𝑐) = awpJ𝑝K(𝑐) ∩ dwlpJ𝑝K(𝑐) and awlpJ𝑝K(𝑐) = awpJ𝑝K(𝑐) ∪ dwlpJ𝑝K(𝑐).

Proof. See [Verscht and Kaminski 2024, Appendix E.3.1]. □

6.3 On the Semantics of Syntactic TopKAT Transformations
Figure 10 shows TopKAT equations for each logic, if expressible. As mentioned earlier, the equations

are syntactically very similar (see Section 5). In fact, the equations can be transformed into others

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 60. Publication date: January 2025.

A Taxonomy of Hoare-Like Logics 60:25

𝑏 ⊆ awpJ𝑝K(𝑐)

𝑏 ⊆ dwpJ𝑝K(𝑐)

𝑏 ⊆ awlpJ𝑝K(𝑐)

𝑏 ⊆ dwlpJ𝑝K(𝑐)

𝑏 ⊆ (awp ∩ dwlp)J𝑝K (𝑐)

𝑏 ⊆ (awp ∪ dwlp)J𝑝K (𝑐)

dwpJ𝑝K(𝑐) ⊆ 𝑏 dwlpJ𝑝K(𝑐) ⊆ 𝑏

awlpJ𝑝K(𝑐) ⊆ 𝑏awpJ𝑝K(𝑐) ⊆ 𝑏

(awp ∪ dwlp)J𝑝K (𝑐) ⊆ 𝑏

(awp ∩ dwlp)J𝑝K (𝑐) ⊆ 𝑏

asp J𝑝K(𝑏) ⊆ 𝑐aslpJ𝑝K(𝑏) ⊆ 𝑐

dslpJ𝑝K(𝑏) ⊆ 𝑐 dsp J𝑝K(𝑏) ⊆ 𝑐

(asp ∩ dslp)J𝑝K (𝑏) ⊆ 𝑐

(asp ∪ dslp)J𝑝K (𝑏) ⊆ 𝑐

𝑐 ⊆ dslpJ𝑝K(𝑏) 𝑐 ⊆ dsp J𝑝K(𝑏)

𝑐 ⊆ aslpJ𝑝K(𝑏) 𝑐 ⊆ asp J𝑝K(𝑏)

𝑐 ⊆ (asp ∪ dslp)J𝑝K (𝑏)

𝑐 ⊆ (asp ∩ dslp)J𝑝K (𝑏)

Fig. 11. Collapse of program logics under certain assumptions, part 3. Blue dashed boxes enclose logics that
collapse (i.e. the implications become equivalences) under absence of branching divergence. Note that the
logics in the lower half are equivalent in general, we mark them to demonstrate the symmetry.

by systematical syntactic means. Consider, for instance, ⊤𝑏𝑝𝑐 = ⊤𝑏𝑝 for partial correctness. When

moving ⊤ from left to right, we obtain 𝑏𝑝𝑐⊤ = 𝑏𝑝⊤ for the in-between logic (see Section 5.2).

However, just switching ⊤-sides in itself is not a meaningful transformation: Switching sides

on 𝑏𝑝𝑐⊤ = 𝑏⊤ (Lisbon logic) yields ⊤𝑏𝑝𝑐 = ⊤𝑏: By comparing codomains, this equation would

somehow treat the precondition𝑏 as a set of final states (i.e. a postcondition) which is not meaningful.

Another transformation is adding or removing 𝑝 on the right-hand side of the equation (depending

on whether or not 𝑝 is already present or not). For example, from ⊤𝑏𝑝𝑐 = ⊤𝑐 (incorrectness logic)
we obtain ⊤𝑏𝑝𝑐 = ⊤𝑝𝑐 (angelic partial incorrectness). Since adding (removing) 𝑝 can be seen as a

filtering (or not) of unreachable states, this seems like a meaningful transformation. However, from

⊤𝑏𝑝𝑐 = ⊤𝑏𝑝 (partial correctness) we obtain⊤𝑏𝑝𝑐 = ⊤𝑏, which again interprets 𝑏 as a postcondition.

Consequently, when searching for meaningful syntactic transformations, we must ensure that 𝑏 is

a pre- and 𝑐 is a postcondition. We propose hence the following set of meaningful transformations:

(t1) Switch the ⊤-side and switch between 𝑏 and 𝑐 (or 𝑏𝑝 and 𝑝𝑐) on the right-hand side. This

corresponds to switching between incorrectness and correctness reasoning. For example, we

get from partial correctness (⊤𝑏𝑝𝑐 = ⊤𝑏𝑝) to partial incorrectness (𝑏𝑝𝑐⊤ = 𝑝𝑐⊤). In Figure 10,

this corresponds to going from the upper to the lower part.

(t2) Switching from ∗⊤ to ∗𝑝⊤ or ⊤∗ to ⊤𝑝∗. This corresponds to switching from liberal to non-

liberal reasoning, which makes sense as adding the program to the equation concentrates

the reasoning on reachable states or dually states from which computation terminates. By

requiring ⊤ to be a part of the equation, we avoid the issue described above and ensure that

pre- and postconditions are interpreted correctly.

(t3) Switching from 𝑏𝑝 to 𝑝𝑐 and negating all conditions. Broadly speaking, this corresponds

to switching between angelic and demonic resolution of nondeterminism. For example,

we go from angelic partial incorrectness (⊤𝑏𝑝𝑐 = ⊤𝑝𝑐) to demonic partial incorrectness
(⊤𝑏𝑝𝑐 = ⊤𝑏𝑝). However, starting with partial correctness, for example, we know that the

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 60. Publication date: January 2025.

60:26 Lena Verscht and Benjamin Lucien Kaminski

corresponding angelic variant is inexpressible in TopKAT. Applying this syntactic transforma-

tion on the equation 𝑏𝑝𝑐⊤ = 𝑝𝑐⊤ for angelic total correctness, we end up with 𝑏𝑝𝑐⊤ = 𝑝𝑐⊤.
This characterizes the in-between logic, which under the assumption of nonexistence of

branching divergence is equivalent to partial correctness. So, even though we do not end up

exactly with the demonic variant, we end up somewhere “close”.

Applying combinations of these three transformations, we can get from each logic in Figure 9 to

any other logic. Additionally, the TopKAT expressible logics are closed under t1 – t3. This speaks in

favor of the meaningfulness of these transformations. Nevertheless, the transformations considered

appear still somewhat arbitrary to us and we wonder whether there is more underlying structure

that we can find in these syntactic transformations.

7 OpenQuestions
Complexity of Weakest Pre- and Strongest Postcondition Analyses. Throughout this paper, we

compared analyses using wp with analyses using sp. On several occasions, it appeared as if one is

simpler than the other. For example, in Section 3, we saw that there are no inductive definitions for

dsp and aslp. This suggests that these transformers are harder to compute. Is there an intuitive

reason for this limitation? Are there also wp transformers for which no inductive definitions exists?

On the other hand, in Figure 1, we distinguished seven coreachability classes related to wp, but
only four reachability classes related to sp. Also in Figure 10, the structure of the bottom (i.e.: the

sp) half, seems simpler. This in turn leaves the impression that wp is more complex than sp.
A related observation is that we can characterize each reachability class in Figure 3 using (Boolean

combinations of) sp transformers:

(1) is dsp.
(2) is asp without dsp.
(3) is dslp without dsp.
(4) are all states without aslp.

Making a similar list for coreachability classes usingwp transformers is not possible: Classes (3) and

(5) in Figure 1 are always either contained in any particular wp transformer or not, as evidenced by

the fact that they are always either both colored green or both left white. The difference between

(3) and (5) is that, while computation can terminate both inside and outside of the postcondition,

(5) additionally allows divergence. Is there a sensible transformer that we can define to distinguish

classes (3) and (5)? We also wonder whether there is a deeper reason as to why the full separation

is possible for coreachability classes, but not for reachability classes.

Additionally, the sp transformers are complete in the sense that combining them does not yield

any new logics, as can be seen in Figure 10. This is not the case for the wp setting, validated by

the in-between logics presented in Section 5.2, which were defined as the union and intersection

of transformers. There seem to be more intricacies in the wp setting than in the sp one, but this

seems difficult to pin down.

Kleene Algebraic Reasoning. While numerous TopKAT equations express the same program

property, determining which should constitute the “canonical” equations remains an open challenge.

We chose one such a set in Section 5. Based on these, we saw that there are some logics which cannot
be expressed in TopKAT, but can be expressed using predicate transformers. Can we thus infer that

predicate transformers are more powerful than TopKAT? Addressing this requires an argument on

why a certain set of TopKAT equations is indeed canonical. Additionally, as previously noted in

Section 5, there exist extensions of Kleene algebra that can handle divergence. With such an algebra,

we might get new insights into the expressiveness of KAT compared to predicate transformers.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 60. Publication date: January 2025.

A Taxonomy of Hoare-Like Logics 60:27

Four logics were expressible using predicate transformers but required a system of two TopKAT
equations, see Sections 5 and 6. Are these logics inherently more complex than others, and if so, in

what sense? Are there formal arguments we can find for the complexity of program logics?

Galois Connections in TopKAT. We have seen that there exist Galois connections between some of

the logics we have considered. These Galois connections do not seem to be visible yet in the TopKAT
equations. We wonder whether there exists syntactical transformations of TopKAT equations

that correspond to the Galois connections, perhaps under a different set of canonical TopKAT
(in)equations. In this context, we also wonder whether the nonexistence of other Galois connections
can also be made visible somehow in TopKAT.

Algebraic Reasoning about Divergence. Kleene algebra was extended to structures such as demonic

refinement algebra [von Wright 2004] or omega algebra [Cohen 2000] in order to facilitate the

analysis of nontermination. Particularly interesting for our setting is weak omega algebra [Möller

and Struth 2005], which always has a top element and thus fits well into the setting of TopKAT. For
a more elaborate discussion of the algebraic treatment of divergence, we refer to [Jules et al. 2011].

In future work, we aim to explore how our findings can be extended to algebras capable of more

nuanced handling of nontermination.

Deriving Proof Rules. Most of the predicate transformers presented in this paper are accompanied

by a set of inductive rules. For the novel transformers dsp and aslp, establishing such rules is more

challenging but possible, as discussed in Section 3.3. Cousot [2024] demonstrates how proof systems

for program logics can be constructed via abstractions of the semantics. It would be interesting to

explore whether proof rules could similarly be derived from TopKAT equations.

Healthy Transformers. In theory, the seven coreachability classes give rise to 2
7 = 128 wp

transformers, and the four reachability classes give rise to 2
4 = 16 sp transformers. Which of these

are sensible or meaningful? Dijkstra assessed the meaningfulness of predicate transformers based

on healthiness conditions like strictness, monotonicity, conjunctiveness, etc. We wonder how many

and which ones of the wp and sp transformers meet these criteria.

Relation to Runtime Transformers. An extension of weakest pre transformers is the expected

runtime transformer [Kaminski et al. 2018]. In accordance with Corollary 4.2, the expected runtime

transformer can be used to prove termination of programs. An interesting open question is whether

a similar approach can be defined for reachability. One idea would be to use a strongest postcondition

style transformer to compute the expected number of steps required to reach a state. If this number

is finite, we might conclude that the state is reachable.

The Coin. Finally, in Section 4.4, we spoke about the asymmetries in the taxonomy Figure 5. We

have yet to find a satisfactory answer to why the “two sides of the same coin” are not mirrored.

8 Conclusion
We have provided a systematic overview of program logics defined by predicate transformers

and Kleene algebra with top and tests. Our graphical illustrations clarify the relationships among

various logics. A main point of interest was the symmetries and asymmetries between forward

and backward reasoning. Notably, we found that many asymmetries could be traced back to one

main observation: Running a nondeterministic program on some initial state can both reach some

final state and diverge. But no final state can be both reachable from somewhere and at the same

time unreachable. In other words: a nondeterministic computation has the potential to lead to

somewhere or nowhere, but it cannot at the same time originate from somewhere or from nowhere.

We call this the absence of reachability confluence (Observation 2).

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 60. Publication date: January 2025.

60:28 Lena Verscht and Benjamin Lucien Kaminski

𝑏 ⊆ awpJ𝑝K(𝑐)
Lisbon logic (angelic tot. corr.)

𝑏 ⊆ dwpJ𝑝K(𝑐)
Hoare logic (total correctness)

𝑏 ⊆ awlpJ𝑝K(𝑐)
angelic partial correctness

dwpJ𝑝K(𝑐) ⊆ 𝑏 dwlpJ𝑝K(𝑐) ⊆ 𝑏

awlpJ𝑝K(𝑐) ⊆ 𝑏𝑏 ⊆ dwlpJ𝑝K(𝑐)
Hoare logic (partial correctness)

awpJ𝑝K(𝑐) ⊆ 𝑏
partial incorrectness

asp J𝑝K(𝑏) ⊆ 𝑐
Hoare logic (partial correctness)

aslpJ𝑝K(𝑏) ⊆ 𝑐

dslpJ𝑝K(𝑏) ⊆ 𝑐 dsp J𝑝K(𝑏) ⊆ 𝑐

𝑐 ⊆ dslpJ𝑝K(𝑏)
partial incorrectness

𝑐 ⊆ dsp J𝑝K(𝑏)
demonic incorrectness

𝑐 ⊆ aslpJ𝑝K(𝑏)
angelic partial incorrectness

𝑐 ⊆ asp J𝑝K(𝑏)
incorrectness logic

(1)

(2) (2)

(3)

(3)

Fig. 12. A taxonomy of predicate transformer-based program logics with axes (1) to (3) corresponding to the
dimensions of program logics.

Furthermore, we introduced new predicate transformers – angelic strongest and demonic

strongest liberal postconditions – as well as novel logics involving union and intersection of

transformers. Thereby, we filled some gaps in the landscape of program logics which seemed to

naturally arise when taking the Kleene algebraic view. Additionally, we discussed in Section 4.3 how

assumptions about program properties, such as determinism or the reachability of final states, influ-

ence the taxonomy. As conjectured at the very beginning, we can indeed identify three dimensions

of program logics, each corresponding to an axis in Figure 12:

(1) correctness (being able to reach) vs. incorrectness (being reachable)

(2) totality vs. partiality
(3) angelic vs. demonic resolution of nondeterminism

As discussed in Section 4.3, if we assume that totality and partiality coincide, i.e. if 𝑝 always

terminates and all states are reachable, the logics collapse along the vertical axis (2). Dually, if we

assume that 𝑝 is deterministic and reversible, the logics collapse along the horizontal axis (3).

Apart from being of theoretical interest, the examination of the effect of assumptions is a step

towards practical tools: We explore conditions that have to be discharged, so that different logics

happen to collapse. The classical example of such a condition is

partial correctness + termination = total correctness.

If we have a partial correctness proof, we “merely” have to prove termination to obtain a total

correctness proof. This is practically relevant because partial correctness is a lower bound on a

greatest fixed point which can be discharged with invariant-based reasoning. Total correctness, on

the other hand, is a lower bound on a least fixed point, which is much harder to discharge. Separation

of concerns into partial correctness and termination aids to make proving total correctness more

tractable. In a similar manner, we have

partial incorrectness + reachability = incorrectness.

Exactly the same least/greatest fixed point considerations apply to partial and “total” incorrectness.

Hence, partial incorrectness logic is easier to discharge and we obtain that an additional reachability

proof would give us “total” incorrectness.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 60. Publication date: January 2025.

A Taxonomy of Hoare-Like Logics 60:29

For Kleene algebra with top and tests, we investigated the relationship between TopKAT express-

ible logics and predicate transformer logics. In the course of this, we showed that we can express

Lisbon logic (angelic total correctness) in TopKAT. We also saw that in Table 2, there is a basic

TopKAT equation which does not directly correspond to a predicate transformer equation. However,

we showed that this equation can be expressed by combining predicate transformers in Section 5.2.

This suggests that predicate transformers are stronger in the sense that all TopKAT equations are

expressible using predicate transformers, but not the other way around. This is, however, due to

the limitations of the chosen TopKAT approach and could be fixed by including some mechanism

for identifying divergence.

Acknowledgments
We would like to thank Kevin Batz and Philipp Schröer for the valuable discussions on practical

implications of this paper, as well as the anonymous reviewers for their very constructive and

valuable feedback. This work was partially supported by the ERC Advanced Research Grant

FRAPPANT (grant no. 787914).

References
Flavio Ascari, Roberto Bruni, Roberta Gori, and Francesco Logozzo. 2024. Sufficient Incorrectness Logic: SIL and Separation

SIL. arXiv:2310.18156 [cs.LO] https://arxiv.org/abs/2310.18156

Roberto Bruni, Roberto Giacobazzi, Roberta Gori, and Francesco Ranzato. 2023. A correctness and incorrectness program

logic. J. ACM 70, 2 (2023), 1–45. https://doi.org/10.1145/3582267

Ernie Cohen. 2000. Separation and reduction. In International Conference on Mathematics of Program Construction. Springer,
45–59. https://doi.org/10.1007/10722010_4

Patrick Cousot. 2024. Calculational Design of [In]Correctness Transformational Program Logics by Abstract Interpretation.

Proc. ACM Program. Lang. 8, POPL, Article 7 (Jan. 2024), 34 pages. https://doi.org/10.1145/3632849

Patrick Cousot and Radhia Cousot. 1977. Abstract interpretation: a unified lattice model for static analysis of programs by

construction or approximation of fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages (Los Angeles, California) (POPL ’77). Association for Computing Machinery, New York, NY,

USA, 238–252. https://doi.org/10.1145/512950.512973

Patrick Cousot, Radhia Cousot, Manuel Fähndrich, and Francesco Logozzo. 2013. Automatic Inference of Necessary

Preconditions. In Verification, Model Checking, and Abstract Interpretation, Roberto Giacobazzi, Josh Berdine, and Isabella

Mastroeni (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 128–148. https://doi.org/10.1007/978-3-642-35873-9_10

Edsko de Vries and Vasileios Koutavas. 2011. Reverse Hoare Logic. In Software Engineering and Formal Methods, Gilles
Barthe, Alberto Pardo, and Gerardo Schneider (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 155–171. https:

//doi.org/10.1007/978-3-642-24690-6_12

Ellie D’hondt and Prakash Panangaden. 2006. Quantum weakest preconditions. Mathematical Structures in Computer Science
16, 3 (2006), 429–451. https://doi.org/10.1017/S0960129506005251

Edsger W. Dijkstra. 1975. Guarded Commands, Nondeterminacy and Formal Derivation of Programs. Commun. ACM 18, 8

(1975), 453–457. https://doi.org/10.1145/360933.360975

Edsger W. Dijkstra. 1976. A discipline of programming. Vol. 613924118. Prentice Hall PTR.
EdsgerW. Dijkstra and Carel S. Scholten. 1990. Predicate Calculus and Program Semantics. Springer-Verlag, Berlin, Heidelberg.

https://doi.org/10.1007/978-1-4612-3228-5

Matthew S. Hecht. 1977. Flow Analysis of Computer Programs. Elsevier Science Inc., USA.
C. A. R. Hoare. 1969. An Axiomatic Basis for Computer Programming. Commun. ACM 12, 10 (Oct. 1969), 576–580.

https://doi.org/10.1145/363235.363259

C. A. R. Hoare. 1978. Some Properties of Predicate Transformers. J. ACM 25, 3 (July 1978), 461–480. https://doi.org/10.

1145/322077.322088

Desharnais Jules, Bernhard Moeller, and Struth Georg. 2011. Algebraic Notions of Termination. Logical Methods in Computer
Science Volume 7, Issue 1 (Feb. 2011). https://doi.org/10.2168/lmcs-7(1:1)2011

Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Federico Olmedo. 2018. Weakest Precondition

Reasoning for Expected Runtimes of Randomized Algorithms. J. ACM 65, 5, Article 30 (Aug. 2018), 68 pages. https:

//doi.org/10.1145/3208102

Dexter Kozen. 1997. Kleene algebra with tests. ACM Trans. Program. Lang. Syst. 19, 3 (May 1997), 427–443. https:

//doi.org/10.1145/256167.256195

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 60. Publication date: January 2025.

https://arxiv.org/abs/2310.18156
https://arxiv.org/abs/2310.18156
https://doi.org/10.1145/3582267
https://doi.org/10.1007/10722010_4
https://doi.org/10.1145/3632849
https://doi.org/10.1145/512950.512973
https://doi.org/10.1007/978-3-642-35873-9_10
https://doi.org/10.1007/978-3-642-24690-6_12
https://doi.org/10.1007/978-3-642-24690-6_12
https://doi.org/10.1017/S0960129506005251
https://doi.org/10.1145/360933.360975
https://doi.org/10.1007/978-1-4612-3228-5
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/322077.322088
https://doi.org/10.1145/322077.322088
https://doi.org/10.2168/lmcs-7(1:1)2011
https://doi.org/10.1145/3208102
https://doi.org/10.1145/3208102
https://doi.org/10.1145/256167.256195
https://doi.org/10.1145/256167.256195

60:30 Lena Verscht and Benjamin Lucien Kaminski

Petar Maksimović, Caroline Cronjäger, Andreas Lööw, Julian Sutherland, and Philippa Gardner. 2023. Exact Separation

Logic: Towards Bridging the Gap Between Verification and Bug-Finding. In 37th European Conference on Object-Oriented
Programming (ECOOP 2023) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 263), Karim Ali and Guido

Salvaneschi (Eds.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 19:1–19:27. https://doi.org/

10.4230/LIPIcs.ECOOP.2023.19

Annabelle McIver and Carroll Morgan. 2005. Abstraction, Refinement and Proof for Probabilistic Systems. Springer. https:

//doi.org/10.1007/b138392

Marco Milanese and Francesco Ranzato. 2022. Local completeness logic on Kleene algebra with tests. In International Static
Analysis Symposium. Springer, 350–371. https://doi.org/10.1007/978-3-031-22308-2_16

Bernhard Möller, Peter O’Hearn, and Tony Hoare. 2021. On Algebra of Program Correctness and Incorrectness. In Relational
and Algebraic Methods in Computer Science: 19th International Conference, RAMiCS 2021, Marseille, France, November 2–5,
2021, Proceedings (Marseille, France). Springer-Verlag, Berlin, Heidelberg, 325–343. https://doi.org/10.1007/978-3-030-

88701-8_20

Bernhard Möller and Georg Struth. 2005. wp Is wlp. In International Conference on Relational Methods in Computer Science.
Springer, 200–211. https://doi.org/10.1007/11734673_16

Carroll Morgan, Annabelle McIver, and Karen Seidel. 1996. Probabilistic Predicate Transformers. ACM Trans. Program.
Lang. Syst. 18, 3 (1996), 325–353. https://doi.org/10.1145/229542.229547

Peter W. O’Hearn. 2019. Incorrectness Logic. Proc. ACM Program. Lang. 4, POPL, Article 10 (Dec. 2019), 32 pages.

https://doi.org/10.1145/3371078

Azalea Raad, Julien Vanegue, and Peter O’Hearn. 2024. Non-termination Proving at Scale. Proc. ACM Program. Lang. 8,
OOPSLA2, Article 280 (Oct. 2024), 29 pages. https://doi.org/10.1145/3689720

Xavier Rival and Kwangkeun Yi. 2020. Introduction to Static Analysis – An Abstract Interpretation Perspective. MIT Press.

Lena Verscht and Benjamin Kaminski. 2023. Hoare-Like Triples and Kleene Algebras with Top and Tests: Towards a Holistic

Perspective on Hoare Logic, Incorrectness Logic, and Beyond. arXiv:2312.09662 [cs.LO] https://arxiv.org/abs/2312.09662

Lena Verscht and Benjamin Lucien Kaminski. 2024. A Taxonomy of Hoare-Like Logics: Towards a Holistic View using

Predicate Transformers and Kleene Algebras with Top and Tests. arXiv:2411.06416 [cs.PL] https://arxiv.org/abs/2411.

06416

Joakim von Wright. 2002. From Kleene algebra to refinement algebra. In International Conference on Mathematics of Program
Construction. Springer, 233–262. https://doi.org/10.1007/3-540-45442-X_14

Joakim von Wright. 2004. Towards a refinement algebra. Science of Computer Programming 51, 1-2 (2004), 23–45. https:

//doi.org/10.1016/j.scico.2003.09.002

John Wickerson. 2024. What is the Other Incorrectness Logic? https://johnwickerson.wordpress.com/2024/02/15/what-is-

the-other-incorrectness-logic/.

Cheng Zhang, Arthur Azevedo de Amorim, and Marco Gaboardi. 2022. On incorrectness logic and Kleene algebra with top

and tests. Proc. ACM Program. Lang. 6, POPL, Article 29 (Jan. 2022), 30 pages. https://doi.org/10.1145/3498690

Linpeng Zhang and Benjamin Lucien Kaminski. 2022. Quantitative Strongest Post. CoRR abs/2202.06765 (2022). https:

//doi.org/10.48550/ARXIV.2202.06765 arXiv:2202.06765

Noam Zilberstein, Derek Dreyer, and Alexandra Silva. 2023. Outcome Logic: A Unifying Foundation for Correctness and

Incorrectness Reasoning. Proc. ACM Program. Lang. 7, OOPSLA1, Article 93 (April 2023), 29 pages. https://doi.org/10.

1145/3586045

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 60. Publication date: January 2025.

https://doi.org/10.4230/LIPIcs.ECOOP.2023.19
https://doi.org/10.4230/LIPIcs.ECOOP.2023.19
https://doi.org/10.1007/b138392
https://doi.org/10.1007/b138392
https://doi.org/10.1007/978-3-031-22308-2_16
https://doi.org/10.1007/978-3-030-88701-8_20
https://doi.org/10.1007/978-3-030-88701-8_20
https://doi.org/10.1007/11734673_16
https://doi.org/10.1145/229542.229547
https://doi.org/10.1145/3371078
https://doi.org/10.1145/3689720
https://arxiv.org/abs/2312.09662
https://arxiv.org/abs/2312.09662
https://arxiv.org/abs/2411.06416
https://arxiv.org/abs/2411.06416
https://arxiv.org/abs/2411.06416
https://doi.org/10.1007/3-540-45442-X_14
https://doi.org/10.1016/j.scico.2003.09.002
https://doi.org/10.1016/j.scico.2003.09.002
https://johnwickerson.wordpress.com/2024/02/15/what-is-the-other-incorrectness-logic/
https://johnwickerson.wordpress.com/2024/02/15/what-is-the-other-incorrectness-logic/
https://doi.org/10.1145/3498690
https://doi.org/10.48550/ARXIV.2202.06765
https://doi.org/10.48550/ARXIV.2202.06765
https://arxiv.org/abs/2202.06765
https://doi.org/10.1145/3586045
https://doi.org/10.1145/3586045

	Abstract
	1 Introduction
	2 The Nondeterministic Guarded Command Language
	3 Predicate Transformers
	3.1 Weakest Preconditions
	3.2 Strongest Postconditions
	3.3 Backward vs. Forward Analysis
	3.4 Relating Predicate Transformers

	4 A Taxonomy of Hoare-Like Program Logics
	4.1 Program Logics
	4.2 Related Taxonomies
	4.3 On the Impact of Additional Assumptions
	4.4 Symmetries and Asymmetries

	5 Kleene Algebra with Top and Tests
	5.1 Expressing Program Logics in TopKAT
	5.2 The In-Between Logics

	6 A Taxonomy of Program Logics: Revisited
	6.1 Adding the In-Between Logics
	6.2 Absence of Branching Divergence
	6.3 On the Semantics of Syntactic TopKAT Transformations

	7 Open Questions
	8 Conclusion
	Acknowledgments
	References

