
Teaching Formal Methods
to Undergraduate Students Using Maude

Peter Csaba Ölveczky(B)

University of Oslo, Oslo, Norway

peterol@ifi.uio.no

Abstract. I have been teaching an introductory formal methods course
based on Maude—first to third- and fourth-year students, and lately to
second-year students—at the University of Oslo for a number of years.
The first part of the course introduces functional modules in Maude
and covers basic topics in term rewriting, whereas the second part of the
course uses Maude to formally model and analyze a number of classic dis-
tributed systems, including: transport protocols such as the alternating
bit and the sliding windows protocols, the two-phase commit protocol
for distributed atomic commitment, distributed algorithms for mutual
exclusion and leader election, and authentication protocols.

In this invited“experience report” Ibrieflymotivate theuseofMaude for
an introductory formal methods course, outline the course content, and
summarize student feedback and my own impressions about the course.

1 Introduction

Too many years ago I had to design an introductory formal methods course
for third-year students at the University of Oslo. The main question was, and
remains: How to teach an elective introductory formal methods course in an
environment where students have never heard about formal methods, and where
our colleagues are not overly receptive to the usefulness and beauty of a giving
formal treatment to computer systems?

In this “invited experience report” I briefly describe the setting and some
challenges when it comes to teaching introductory formal methods courses,
and how these challenges might be overcome (Sect. 2). In Sect. 3 I discuss how
some papers argue that formal methods should be taught. In Sect. 4 I argue
that—based on the criteria for teaching formal methods—rewriting logic [14]
and its accompanying Maude tool [10] should provide a suitable framework for
introducing formal methods to undergraduate students.

I have taken my own medicine and have been teaching formal methods based
on Maude for twenty years; first to third- and fourth-year students, and since
2019 to second-year students. When the course had reached a certain stability
and maturity, I wrote a textbook, called “Designing Reliable Distributed Sys-
tems: A Formal Methods Approach Based on Executable Formal Modeling in
Maude,” which was published in 2018 in Springer’s Undergraduate Topics in
Computer Science series [21]. In Sect. 5 I give an overview of the content of the
c© Springer Nature Switzerland AG 2022
K. Bae (Ed.): WRLA 2022, LNCS 13252, pp. 85–110, 2022.
https://doi.org/10.1007/978-3-031-12441-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-12441-9_5&domain=pdf
https://doi.org/10.1007/978-3-031-12441-9_5

86 P. C. Ölveczky

Fig. 1. The structure of the “Programming and Networks” bachelor degree at my
university. The third year is devoted to freely selected courses and is not shown.

course and of this book. Finally, Sect. 6 summarizes my experiences and the
results of the anonymous student evaluation throughout the years.

The longer paper [19] on the same topic gives more details, and presents a
broader case for using Maude for teaching, since—in contrast to this paper—it
is aimed at the formal methods community without expertise in Maude.

2 Setting and Challenges

In this section I discuss some challenges involved in trying to teach formal meth-
ods to undergraduate students at a place like the University of Oslo.

When Turing Award winner and department founder Ole-Johan Dahl was
at the department, formal methods/verification was a mandatory course in the
Bachelor program on “Programming,” and hence around 80 students took the
formal methods course every year. However, since then my esteemed colleagues
have relegated formal methods to an elective course in the periphery of that
Bachelor program, shown in Fig. 1, which shows the courses that the students
should take in the first two years. (The program is in Norwegian, so there is no
English version.) The formal methods course (“IN2100–Logikk for Systemanal-
yse”) has to compete with a course introducing operating systems and computer
networks and one on computability and complexity for the final 10 credits in
this Bachelor program. In such a setting, would an 18–20-year-old student, who
has no idea what formal methods are, choose to take the formal methods course
instead of a (supposedly good, from what I hear) course on operating systems

Teaching Formal Methods to Undergraduate Students Using Maude 87

and computer networks? I am pretty sure that as a 19-year-old student I would
have taken the OS course instead, and would never have been exposed to for-
mal methods during my studies. However, I was lucky enough to study while
the above-mentioned Ole-Johan Dahl was still teaching, so we had to take the
verification course, which led me to my current path.

This problem is compounded by the fact that students at the University
of Oslo study “Informatics” to quickly get a good job, and therefore prefer
to take more “practical,” seemingly more work-relevant, courses. In a recent
Communications of the ACM blog post [25], Daniel G. Schwartz at the Florida
State University writes that this does not just apply to Norway: “Another issue
is that most CS students are primarily only interested in acquiring the skills that
will enable them to find jobs as software developers. Few have any interest in
pursuing graduate studies and research. For this reason, they see no purpose in
studying theoretical topics.” If this were not enough, our students tend to have
very limited background in mathematics, and tend not to study too much.

How can we overcome such “structural” challenges? Unless the Bachelor cur-
riculum changes, or the course again becomes a third-year course, it would seem
hard to attract students. Therefore, the main hope is to create such a good course
that students recommend the course on an unknown subject to their peers. In-
deed, most students taking the course this year do it because they heard it was
a good course. The problem with this “word-of-mouth” strategy is that students
mostly socialize with students at the same stage in their studies. Because of this,
and because students “try out” many courses at the beginning of the semester,
there is a need to quickly demonstrate the power and usefulness on relevant
problems and applications. Furthermore, the lack of mathematical background1

also means that the course should not be very hard or “theoretic.”
Related to the above challenges, and maybe the reason why the formal meth-

ods course has been relegated to the purgatory of elective courses, is the following
misconception, quoted from [17]:

In industry, formal methods have a reputation for requiring a huge
amount of training and effort to verify a tiny piece of relatively straight-
forward code, so the return on investment is justified only in safety-
critical domains (such as medical systems and avionics).

Fortunately, formal methods and their tools have matured quite a lot, and we
also have a better understanding of what formal methods can and cannot do
well. We need to advertise the success stories of formal methods; for example,
in my course I discuss in some depth: the paper “How Amazon Web Services
Uses Formal Methods” [17] by engineers developing the key cloud computing
systems at Amazon Web Services; the work of Ralf Sasse and others to find
previously unknown flaws in the Internet Explorer web browser using Maude [9];
and the work by David Basin and Ralf Sasse and others who use “Maude-related”
methods to find serious flaws in the 5G standard [23] and, in particular, in the

1 I once got complaints from the head of studies for supposedly having shown a quan-
tifier in a lecture!

88 P. C. Ölveczky

VISA and MasterCard payment systems [5,6]. The main Norwegian newspaper
has even made a short video about the latter, which I show to my students.

Another misconception, that we ourselves quite often perpetuate, is that
formal methods are aimed at safety-critical systems. It is true that society is
increasingly dependent on such systems (from self-driving cars to airplanes and
power distribution systems). However, in a country like Norway, I do not think
that many students will end up developing safety-critical systems. Selling formal
methods for safety-critical systems could therefore be self-defeating. Fortunately,
in contrast to 20–30 years ago, when everybody developed their own systems for
local use, these days cloud computing has led to world-wide services, where “the
winner takes it all” in each kind of “service,” with the profit for being that win-
ner potentially enormous. Together with increasing system complexity, this need
to develop the highest-quality system implies that an additional up-front invest-
ment in system quality really pays off in “mainstream” software development;
this is also the main message of the above AWS paper [17].

Another challenge is the worse and worse mathematical background, and
skepticism toward mathematics, among students. In [25] Schwartz writes that
“most of CS undergrads don’t like mathematics and so-called ‘theory’ courses,
and would prefer to not take them,” and quotes Leslie Lamport, who argues that
“while good programming really requires mathematical precision, [Lamport] also
acknowledges that ‘basically, programmers and many (if not most) computer
scientists are terrified by math.’ ” I guess that the solution to this problem is to
use accessible/intuitive formal methods that do not require much mathematical
background, and/or to make formal methods look more like “programming,”
which they like and master.

Another issue that sometimes pops up is that formal methods are not in-
tegrated with other courses. Therefore, showing the strength of, or at least ex-
emplify the use of, formal methods to model and analyze systems encountered
in other courses would show students—and maybe also our colleagues defining
study plans—the usefulness of formal methods. This could include examples
from security, networking/communication, databases and distributed transac-
tions, operating systems, etc.

The paper [12] discusses the problem of addressing appropriate systems. The
authors write that formal methods courses use examples and case studies that
are either “constructed and thus do relate to practice” or are “based on projects
of industry partners and are thus, too involved for students.” Again, we need to
address problems which look relevant, in fields such as social media, online shop-
ping and other cloud applications (i.e., distributed transactions), and/or in au-
thentication. To be able address relevant problems in different courses/domains
we need an expressive formalism.

3 How to Teach Formal Methods?

Section 2 listed some challenges involved in making students take formal methods
courses when they are not mandatory, and listed some possible “solutions” to

Teaching Formal Methods to Undergraduate Students Using Maude 89

these challenges. In this section I first briefly discuss a few key papers on teaching
formal methods (see, e.g., [19] and [8] for longer discussions on papers on the
topic), and then try to distill some requirements for courses in formal methods.

3.1 A Few Papers on Teaching Formal Methods.

As its title suggests, in their paper “Teaching Formal Methods for Software
Engineering: Ten Principles,” Cerone, Roggenbach, Schlingloff, Schneider, and
Shaikh list and elaborate on ten principles for teaching formal methods, which
in my view boil down to the following “principles:”

– Formal methods are too large to gain encyclopedic knowledge; we should
just use a few formal methods, since “there is loads to gain by intensively
studying [a] few methods.”

– Formal methods need tools, which “teach the method,” and lab classes, which
should imply that we need a high-quality and fairly stable tool.

– Formal methods are best taught by examples.

In their paper “Teaching Concurrency: Theory in Practice” [1], Aceto, In-
golfsdottir, Larsen, and Srba also share the view that “less is more,” and that we
should repeatedly convey key concepts, instead of providing a broad overview.
They also advocate using automatic verification tools and very expressive and
flexible, yet mathematically simple, executable modeling formalisms, as well as
using modal and temporal logics to specify system requirements.

In the paper with the promising title “Teaching Formal Methods in the Con-
text of Software Engineering,” Liu, Takahashi, Hayashi, and Nakayama take
a somewhat contrarian view [13]. They propose using VDM, refinement, and
Hoare logic, but admit that “none of these techniques is easy to use by ordi-
nary practitioners to deal with real software projects.” In another divergence
from teaching-formal-methods orthodoxy, they claim that “most effective for
students [...] is to write formal specifications by hand, as they learn English as
a foreign language.” Like others, they also argue that “each course should not
be too ambitious; instead it should be focused.” Finally they admit that “there
is little hope to apply refinement calculus in practice.”

There is also a “white paper” on teaching formal methods, “Rooting Formal
Methods Within Higher Education Curricula for Computer Science and Software
Engineering: A White Paper” [8] by a number of participants, including me, at
the First International Workshop on “Formal Methods – Fun for Everybody” in
2019. This paper advocates that a formal methods course must be mandatory for
all Bachelor students in computer science. In addition to also being a proponent
for using small “games” to teach formal methods, this paper emphasizes tool
use, but not industrial tools, which “can cause frustration.”

3.2 What to Teach?

We can try to summarize the various requirements for an introductory course in
formal methods, where such a course is not mandatory, as follows:

90 P. C. Ölveczky

1. It should repeatedly convey key formal methods concepts. But what are these
key concepts? Certainly mathematical modeling/formalization of both sys-
tems/designs and of requirements, and of course reasoning about the models
in terms of model checking and verification, and preferably also model-based
performance estimation. Another key, slightly orthogonal use of formal meth-
ods, is the mathematical analysis of code. More generally, one might also want
to introduce students to logical reasoning in general, dealing with logics, de-
duction rules, models, satisfaction, and may include key folklore results.

2. It should be fun for the students.
3. It should use relevant applications/examples, also related to other courses

the student take, and should seem relevant to today’s systems. To be able to
this, the modeling formalism must be fairly general and expressive.

4. It should use few, but mature, tools, which should seem industry-relevant.
5. We must motivate with industrial success stories.
6. It should be simple and intuitive, and not require much mathematical back-

ground.
7. It should support automatic model checking methods.
8. The formalism must be executable, expressive, and general.

4 Why Teaching Formal Methods Using Maude?

In my view, rewriting logic and its Maude language and tool should be very well
suited to introduce formal methods to undergraduates, as I think that Maude
satisfies the “requirements” in the previous sections as follows:

1. (Repeatedly convey main formal methods concepts.) Maude primarily deals
with modeling systems/designs in rewriting logic. It also supports formalizing
systems requirements in the most elegant and intuitive temporal logic [27],
linear temporal logic (LTL), and provides an LTL model checker. While
Maude’s primary focus is on modeling and model checking of said mod-
els, rewriting logic has been used to define the semantics of many program-
ming languages [15,16], and is the foundation of the K programming lan-
guage semantics and analysis framework [24]. K is a leading tool for formaliz-
ing the semantics of programming languages, and then analyzing programs,
including Ethereum contracts [22]. For model-based performance analysis,
rewriting logic has extensions to timed [18,20] and probabilistic [2] systems,
such that the performance of the resulting probabilistic (and possibly timed)
models can be analyzed by statistical model checking using, e.g., the PVeStA
tool [3]. Finally, teaching Maude also provides an excuse to introduce sim-
ple logics (equational, rewriting, and temporal logics) and their deduction
systems, satisfaction, models, and some folklore (un)decidability proofs.

2. (Fun for students.) What does “fun for students” mean? The students prob-
ably study computer science because they like programming. When I was
a student, I loved functional programming. Maude modeling is essentially
(first-order) functional programming in an object-oriented style.

Teaching Formal Methods to Undergraduate Students Using Maude 91

3. (Relevant examples.) While simple, the Maude specification formalism is
expressive and general. Therefore, relevant examples from different fields
of computer science can easily be specified by undergraduates; as explained
later, I use examples from security/cryptographic protocols, database courses,
key communication protocols and distributed algorithms in my course.

4. (Few and mature tools.) My course only uses Maude, which is a mature and
high-quality tool.

5. (Motivate with industrial success stories.) There are probably other tools
with more industrial success stories. Maude has been used to find a number
of previously unknown errors in Internet Explorer, as well as to model (as-
pects of) industrial systems such as Google’s Megastore, Apache Cassandra,
Apache ZooKeeper, and so on. However, the Tamarin tool [4] has been used
to break the EMV card payment standard [6] and the 5G standard [23], and
is based on multiset rewriting, and even includes some parts of the Maude im-
plementation. Furthermore, the rewriting-logic-based K framework has been
applied commercially to analyze electronic contracts on the blockchain.

6. (Simple and intuitive.) Maude is based on equational and rewriting logic.
Equations—like (x + y)2 = x2 + 2xy + y2—and their use to simplify an
expression by replacing equals for equals, is something that all students are
familiar with from school. Rewriting is fairly similar, so this simplicity and
intuitive logic is one main strengths of rewriting logic, and should make it
an ideal formalism for introducing formal methods to undergraduates.

7. (Model checking.) Maude provides a range of automatic analysis methods,
including rewriting for quick simulation/prototyping and automatic model
checking methods such as reachability analysis and LTL model checking.

8. (Executable expressive and intuitive formalism.) As elaborated above, the
Maude formalism is both expressive, executable, and simple and intuitive.

Reasons for skepticism include a lack of good documentation for beginners; the
manual is very nice and comprehensive, but is not well suited to learn the formal-
ism for a formal methods novice. Furthermore, I use Full Maude for object-based
modeling, but the lack of error messages in Full Maude is a significant problem. I
understand that others, including Francisco Durán, teach object-based modeling
by “encoding” classes and object rules directly in Maude.

5 Course and Textbook Content

In this section I give an overview of the content of the second-year introduc-
tory formal methods course I teach at the University of Oslo, and of its afore-
mentioned textbook, “Designing Reliable Distributed Systems: A Formal Meth-
ods Approach Based on Executable Modeling in Maude” (Fig. 2). I also mention
interesting exam problems I have given, and some exercises in the book, which
might be useful for professors looking for exam problems.

The course consists of 14–15 90-minute lectures, and of the same number of
90-minute problem-solving sessions. I cannot assume much mathematical knowl-

92 P. C. Ölveczky

edge, even though many (but far from all) students have taken a basic course in
logic before taking my course.

Fig. 2. Course textbook.

The course is divided into two
parts: Part I deals with equational
specification in Maude, and covers ba-
sic theory of algebraic specifications
and term rewrite systems, in addi-
tion to defining equational specifi-
cations using Maude. Part II deals
with specifying and analyzing various
distributed systems in Maude using
rewriting logic. It is implicitly also
meant to introduce some fundamen-
tal algorithms in distributed systems.

5.1 Part I: Equational
Specification in Maude and
Term Rewrite Theory

Equational Specification in Maude
(3 lectures). These lectures in-
troduce basic equational specifica-
tions in Maude, starting with many-
sorted ones, followed by order-sorted
and then membership specifications.
We exemplify such specifications with
Peano natural numbers, with a wide
range of functions on such numbers, and then turn to Boolean values, lists,
multisets, binary trees, and so on.

I then cover the built-in Maude modules BOOL, NAT, INT, STRING, CONVERSION,
and RANDOM, and specification modulo structural axioms such as associativity,
commutativity, and identity. This book includes a section on parametrized mod-
ules/programming in Maude, although I do not teach this in class.

Examples include sorting algorithms such as quicksort, merge-sort, insertion-
sort, and bubble-sort.

Example 1. Lists of natural numbers can be defined as follows in Maude:

fmod LIST-NAT is protecting NAT .

sorts List NeList .

subsort Nat < NeList < List .

op nil : -> List [ctor] .

op _::_ : List List -> List [ctor assoc id: nil] .

op _::_ : NeList NeList -> NeList [ctor assoc id: nil] .

op length : List -> Nat .

Teaching Formal Methods to Undergraduate Students Using Maude 93

ops first last : NeList -> Nat .

op reverse : List -> List .

vars M N K : Nat . var L : List .

eq length(nil) = 0 . eq length(N :: L) = 1 + length(L) .

eq first(N :: L) = N . eq last(L :: N) = N .

eq reverse(nil) = nil . eq reverse(N :: L) = reverse(L) :: N .

endfm

The module LIST-NAT defines a sort List, for lists of natural numbers, and a
sort NeList, for non-empty such lists. Lists are constructed by the constructors
nil and an infix associative “list concatenation” function _::_, so that a list
〈6, 2, 8, 4, 6〉 is represented as the term 6 :: 2 :: 8 :: 4 :: 6. Since the con-
catenation function is declared to be associative, parentheses are not needed in
this term. Furthermore, since the concatenation constructor is declared to have
identity element nil, any list l is considered identical to the lists l :: nil and
nil :: l, explaining why the equations above do not explicitly consider the case
of singleton lists.

The well-known merge-sort algorithm can then be specified as follows, where
the merge function is declared to be commutative:

fmod MERGE-SORT is protecting LIST-NAT .

op mergeSort : List -> List .

op merge : List List -> List [comm] .

vars L1 L2 : List . vars NEL1 NEL2 : NeList . vars M N : Nat .

eq mergeSort(nil) = nil .

eq mergeSort(N) = N .

ceq mergeSort(NEL1 :: NEL2) = merge(mergeSort(NEL1), mergeSort(NEL2))

if length(NEL1) == length(NEL2)

or length(NEL1) == length(NEL2) + 1 .

eq merge(nil, L1) = L1 .

ceq merge(M :: L1, N :: L2) = M :: merge(L1, N :: L2) if M <= N .

endfm

I also introduce some classic NP-complete problems (Knapsack, Subset Sum,
Traveling Salesman, Hamiltonian Circuit, Clique, etc.) and show in the book
how Subset Sum and Hamiltonian Circuit can be solved in Maude.

Example 2. In the Subset Sum problem the question is: Given a multiset MS of
positive natural numbers and a number K > 0, is there a subset of MS whose
elements have the sum K? This problem can be solved by the following function
subsetSum, where the module also declares a data type Mset of multisets of
nonzero natural numbers:2

2 The function sd gives the difference between two natural numbers, since subtraction
is not defined on natural numbers.

94 P. C. Ölveczky

fmod SUBSET-SUM is protecting NAT .

sort Mset . --- multisets of non-zero natural numbers

subsort NzNat < Mset .

op none : -> Mset [ctor] . --- empty multiset

op _;_ : Mset Mset -> Mset [ctor assoc comm id: none] . --- mset union

op subsetSum : Mset NzNat -> Bool .

vars N K : NzNat . var MS : Mset .

eq subsetSum(none, K) = false .

eq subsetSum(N ; MS, K) =

if N == K then true

else (if N > K then subsetSum(MS, K)

else subsetSum(MS, sd(K, N)) or subsetSum(MS, K) fi)

fi .

endfm

Termination (1+ lecture). This is one of my favorite topics. This part
presents the basics of classic theory on termination of rewriting à la Dershowitz,
in the simple, unsorted, and unconditional case without function attributes. The
book shows one of the well-known proofs for the undecidability of termination
based on reducing the uniform halting for Turing machines to a term rewrite
system termination problem. It then discusses methods for proving termination
using “weight functions” on well-founded domains, before presenting the elegant
theory of simplification orders. Finally, it introduces two such simplification or-
ders: the lexicographic and the multiset path order.

One exercise—used in two exams, to the chagrin of the students—is defining
the lexicographic path order in Maude. This gives a taste of meta-programming:
how an equational specification can be represented as a Maude term.

I loved to teach the theory of simplification orders, but since I started teaching
the course to second-year students, I no longer deal with this nice theory, or with
representing Turing machines as term rewrite systems. The grateful second-year
undergraduate students are taught temporal logic instead.

Confluence (1- lecture). I continue the term rewriting basics by devoting a
(short) lecture and book chapter to introducing students to confluence, again, in
the most basic setting. I cover the expected bases: Newman’s Lemma, unification,
and checking (local) confluence using the Critical Pair’s Lemma. I am not sure
I convey this topic in a particularly interesting way, and I do not believe that
confluence is the favorite topic of most students.

5.2 Equational Logic (1 lecture)

In one, probably quite heavy, lecture I cover equational logic: the deduction sys-
tem (again in the unsorted and unconditional case), undecidability, and the usual
equivalences between deduction in equational logic and equational simplification.

Teaching Formal Methods to Undergraduate Students Using Maude 95

Then I discuss validity in all structures satisfying the equations E versus
validity in the “intended” structure. Our Maude specifications (also) define the
domains of our data types, so we are mostly interested in properties holding in
models with those elements we have so painstakingly defined. This leads us to in-
ductive theorems. I start by excusing myself that I cannot give a (finitary) sound
and complete proof systems for inductive validity, since such a proof system for
cannot exist due to the negative solution to Hilbert’s Tenth Problem (thankfully
for the students, the argument why that solution leads to the non-existence of
the desired proof system for inductive theorems has been relegated to a long
footnote). I present the general induction principle for data types—which can
be seen as special case of the induction principle for natural numbers—and show
the usual examples (binary trees, lists, natural numbers, etc.). I also show how
Maude sometimes can be used to automatically prove induction theorems (or at
least discharge the proof obligations):

Example 3. We can let Maude prove by induction that our addition function
(defined in the module NAT-ADD) is associative:

fmod NAT-ADD is
sort Nat .

op 0 : -> Nat [ctor] .

op s : Nat -> Nat [ctor] .

op _+_ : Nat Nat -> Nat .

vars M N : Nat .

eq 0 + M = M .

eq s(M) + N = s(M + N) .

endfm

fmod NAT-ASSOC-IND-PROOF is including NAT-ADD .

ops t t2 t3 : -> Nat .

eq (t + t2) + t3 = t + (t2 + t3) . --- induction hypothesis

endfm

red (0 + t2) + t3 == 0 + (t2 + t3) . --- base case

red (s(t) + t2) + t3 == s(t) + (t2 + t3) . --- inductive case

Both red commands returns true, proving associativity of our addition function.

Models of Equational Specifications. We are doing “mathematical mod-
eling” because we use an equational specification to precisely specify a mathe-
matical model/structure. For equational specifications the models are algebras.
Although I do not teach this to second-year students, I have devoted a chapter of
the textbook to the classics of algebras in the context of algebraic specifications.
This chapter covers many-sorted Σ-algebras, then (Σ,E)-algebras, leading to
the algebras TΣ,E and normal form algebras. I present the proof of Birkhoff’s
Completeness Theorem. Finally, I discuss initial algebras and why they are the
ones we really wanted to specify, and that TΣ,E and the normal form algebra both
are this desired mathematical model specified by an equational specification.

96 P. C. Ölveczky

5.3 Part II: Modeling and Analysis of Dynamic/Distributed
Systems Using Rewriting Logic

In the second part of the course/book, we leave the static world of equations, and
the classic theory of algebraic specification and (term) rewrite systems, and move
to modeling and analyzing distributed, and dynamic systems in general. I am
not aware of any other textbook (in English, at least) that gives an introduction
to the modeling and analysis of distributed systems using Maude.

As mentioned elsewhere, additional goals include:

– giving a brief introduction to fundamental distributed algorithms and other
folklore systems (such as the dining philosophers problem) that the students
should know for “computer science literacy”; and

– looking at systems that are relevant to other courses that students take.

Rewriting Logic and Analysis in Maude (1 lecture). I start by explaining
why equations are not suitable for modeling dynamic systems, and then intro-
duce rewriting logic and its proof system, including the definition of concurrent
steps. This can be introduced by small games (since some papers on teaching
formal methods advocate that).

Example 4. In the following simple model of a soccer game, the term "Malmo
FF" - "Barcelona" 3 : 2 models a state in an (ongoing) game, whereas a state
"Malmo FF" - "Barcelona" finalScore: 4 : 2 represents a finished game.

mod GAME is protecting NAT . protecting STRING .

sort Game .

op _-__:_ : String String Nat Nat -> Game [ctor] .

op _-_finalScore:_:_ : String String Nat Nat -> Game [ctor] .

vars HOME AWAY : String . vars M N : Nat .

rl [homeTeamScores] : HOME - AWAY M : N => HOME - AWAY M + 1 : N .

rl [awayTeamScores] : HOME - AWAY M : N => HOME - AWAY M : N + 1 .

rl [finalWhistle] : HOME - AWAY M : N => HOME - AWAY finalScore: M : N .

endm

Example 5. In the whiteboard game, some natural numbers are written on a
whiteboard. In each step of this exciting game, any two numbers n and m can
be replaced by their arithmetic mean n+m quo 2. Importing the data type Mset
for multisets of numbers from Example 2, this game can be specified as follows:

mod WHITEBOARD is protecting SUBSET-SUM .

vars M N : NzNat .

rl [replace] : M ; N => (M + N) quo 2 .

endm

There is a treasure trove of small examples on this topic in the textbook and
among the exam problems. As a running example, I use modeling the life of a

Teaching Formal Methods to Undergraduate Students Using Maude 97

person—her age and civil status. This model is then extended to a population;
i.e., a multiset of persons, who can communicate synchronously to get engaged,
and use message passing to separate. Other examples include classics such the
towers of Hanoi, tic-tac-toe, the coffee bean game, modeling all traveling sales-
man trips and using search to find short trips, packing “suitable” knapsacks
(instead of just knowing that there is a suitable knapsack), and simulating the
behaviors of Turing machines.

This lecture also covers the rewrite and search commands of Maude.

Example 6. We can use the rewrite command to simulate one behavior of the
whiteboard game from a given initial state, and search to find all reachable final
states where the resulting number is less than 13. We then exhibit the path to
one such desired final state:3

Maude> rew 6 ; 33 ; 99 ; 1 ; 7 .

result NzNat: 59

Maude> search 6 ; 33 ; 99 ; 1 ; 7 =>! M such that M < 13 .

Solution 1 (state 151)

M --> 12

Solution 2 (state 153)

M --> 11

No more solutions.

Maude> show path 153 .

state 0, Mset: 1 ; 6 ; 7 ; 33 ; 99

===[rl N ; M => (N + M) quo 2 [label replace] .]===>

state 10, Mset: 1 ; 6 ; 7 ; 66

===[rl N ; M => (N + M) quo 2 [label replace] .]===>

state 51, Mset: 1 ; 7 ; 36

===[rl N ; M => (N + M) quo 2 [label replace] .]===>

state 125, Mset: 1 ; 21

===[rl N ; M => (N + M) quo 2 [label replace] .]===>

state 153, NzNat: 11

Object-Based Modeling of Distributed Systems (1 lecture). This lecture
first shows that “objects” can be modeled as standard Maude terms, and explains
that the state of a distributed system naturally can be seen as a multiset of
objects and messages.

After showing that all this can be modeled in Maude, I make the possibly
problematic decision to use Full Maude’s support for very convenient object-
oriented syntax, including for subclasses. I prefer a clean theory and un-cluttered
models—at a high cost of lot of frustration when Full Maude.

3 The command echo and some other Maude output are not shown.

98 P. C. Ölveczky

The running example, populations of persons, is ideal for illustrating many
notions of distributed object-based models: dynamic object creation (birth of
children) and deletion (death of a person), rules only involving a single object
(like birthdays), synchronous communication (getting engaged) and message-
based communication (getting separated), and e subclasses to model that some
people are Christians and others are Muslims.

This chapter/lecture also models the dining philosophers problem in an object-
oriented style, and uses Maude’s pseudo-random number generator to model
different variations of blackjack, where the next card is drawn pseudo-randomly
from the remaining cards. We can then perform randomized sim-
ulations to simulate how much money I have left after a day in the casino.

Modeling Communication and Transport Protocols (1 lecture). The
goal of Part II is to model sophisticated distributed systems. To achieve this we
need to model different forms and variations of communication: unicast, multi-
cast, broadcast and “wireless” broadcast, message loss, ordered communication
through links, and so on.

The first “larger” applications are a range of well-known transport protocols
used to achieve ordered and reliable message communication on top of an unre-
liable and unordered communication infrastructure. we begin with a TCP-like
sequence-number-based protocol. When the underlying infrastructure provides
ordered (but lossy) communication between pairs of nodes, the sequence numbers
in the TCP-like protocol can be reduced to 0 and 1, giving us the alternating bit
protocol (ABP). Generalizing the TCP-like protocol and ABP so that a node can
send any one of k different messages at any time, instead of only the same mes-
sage, gives us the sliding windows protocol, supposedly the most used protocol
in distributed systems. I like sliding windows for a homework exercise/project,
since the search commands take some time to finish, which I think is useful for
students who are used to programs always giving immediate feedback.

Distributed Algorithms (1 lecture). As mentioned, one of the goals of the
course is to give a flavor of distributed systems, which we do using a number of
fundamental distributed algorithms that are still used in state-of-the-art cloud-
based transaction systems.

These algorithms are also easy to motivate using modern distributed trans-
actions. For example, in today’s cloud-based world the same eBay item could
have been sold (at the dying moments of an auction) to two different persons;
one through a server in Munich, and one through a server in Vanuatu. Or we
can imagine an online travel agency with the following distributed transaction:

reserve(X ,OSL-CDG,KLM,Dec 6 to 15);
reserve(X ,Ritz, Imperial Suite,Dec 6 to 15);
reserve(X ,Chez M,dinner,Dec 9);
pay(X , 6000 ,MasterCard, 1234567891234567 , 11/20 , ...);

Teaching Formal Methods to Undergraduate Students Using Maude 99

These examples can motivate the two-phase commit (2PC) protocol: In the eBay
example, Vanuatu can veto Munich’s commit request if it has also sold the item.
In the Paris vacation example, if each single operation (at its own site) goes
through, the entire transaction should be committed. If, however, one of the
operations cannot be performed (there is no money on the credit card, or the
Imperial Suite at the Ritz is not available those days), the entire distributed
transaction must be aborted. 2PC ensures this.

Multiple distributed operations on the same data could lead to “lost up-
dates.” This can motivate the use of distributed mutual exclusion algorithms.

Example 7. In the token-ring-based distributed mutual exclusion algorithm, the
nodes are organized in a ring structure. There is one token, and a node must
hold the token to enter the critical section; when it exits the critical section, or
when a node receives the token without wanting to enter the critical section, it
sends the token to the next node in the ring.

This algorithm, where each node alternates forever between executing out-
side the critical section, and (if possible) executing inside the critical can be
modeled using objects a class Node, whose attribute status can have the values
outsideCS (the node is executing outside the critical section), waitForCS (the
node is waiting to enter the critical section), and insideCS (the node is execut-
ing inside the critical section). The attribute next denotes the “next” node in
the ring. The token is being sent around as a message:

load model-checker

load full-maude31

(omod TOKEN-RING-MUTEX is
sorts Status MsgContent .

ops outsideCS waitForCS insideCS : -> Status [ctor] .

op msg_from_to_ : MsgContent Oid Oid -> Msg [ctor] .

class Node | next : Oid, status : Status .

op token : -> MsgContent [ctor] .

vars O O1 O2 : Oid .

rl [wantToEnterCS] :

< O : Node | status : outsideCS >

=>

< O : Node | status : waitForCS > .

rl [rcvToken1] :

(msg token from O1 to O)

< O : Node | status : waitForCS >

=>

< O : Node | status : insideCS > .

rl [rcvToken2] :

100 P. C. Ölveczky

(msg token from O1 to O)

< O : Node | status : outsideCS, next : O2 >

=>

< O : Node | >

(msg token from O to O2) .

rl [exitCS] :

< O : Node | status : insideCS, next : O2 >

=>

< O : Node | status : outsideCS >

(msg token from O to O2) .

endom)

(omod INITIAL is including TOKEN-RING-MUTEX .

ops a b c d : -> Oid [ctor] . --- object names

op init : -> Configuration . --- an initial state

eq init

= (msg token from d to a)

< a : Node | status : outsideCS, next : b >

< b : Node | status : outsideCS, next : c >

< c : Node | status : outsideCS, next : d >

< d : Node | status : outsideCS, next : a > .

endom)

We can then check whether it is possible to reach a state in which two nodes
are executing in the critical section at the same time:

Maude> (search [1] init =>* REST:Configuration

< O1:Oid : Node | status : insideCS >

< O2:Oid : Node | status : insideCS > .)

No solution.

Distributed mutual exclusion algorithms are ideal exam problems. The book
presents the central server algorithm, the token ring algorithm, and Maekawa’s
voting algorithm, and I have used Lamport’s bakery algorithm and the interest-
ing Suzuki-Kasami algorithm as exam problems.

2PC solves the “same item sold twice problem” by aborting the whole trans-
action, since one site will veto another site’s attempt to commit a (conflicting)
transaction. A better idea is to sell the item to one of the buyers, which leads
us to distributed leader election and distributed consensus. Leader election is a
key part of distributed consensus algorithms, such as Paxos, which again are key
components in many of today’s cloud-based systems, like Google’s Megastore.
The textbook describes the Chang and Roberts ring-based distributed leader
election algorithm and a spanning-tree based useful for wireless systems. I also
introduce distributed consensus, but leave modeling Paxos as an exercise.

Staying on the cloud computing track, a very nice exam problem that illus-
trates how a cloud-based replicated data store can compromise between desired

Teaching Formal Methods to Undergraduate Students Using Maude 101

levels of consistency, performance, and fault tolerance is inspired by Apache Cas-
sandra: Your data are stored at n replicas; a read or a write request is sent to
all replicas. A client gets the answer (“ok” for writes and the most recent value
of the data item for reads) when k replicas have responded. A lower k gives
improved performance (shorter waiting time for the client) and fault tolerance
(since n − k replicas can crash) improves, while consistency suffers (not even
“read-your-writes” holds when k is low). The system should satisfy “eventual
consistency,” but other transaction guarantees depend on the value of k.

Finally, this chapter presents useful techniques for analyzing fault tolerance
by modeling failures and repairs.

Cryptographic Protocols: Breaking NSPK (1 lecture + 1 guest lec-
ture). One of my favorite chapters/lectures introduces public-key and shared-
key cryptography. We then model the well-known Needham-Schroeder Public-
Key (NSPK) authentication protocol. This is a great example to motivate formal
analysis. The protocol is super small, only three lines, yet its flaws went unde-
tected for 17 years before they were found by formal methods. This demonstrates
that even very small distributed protocols are hard to understand, and that for-
mal methods are useful to find subtle bugs in distributed systems.

It is very easy and natural to model NSPK with four intuitive rewrite rules.
Another 13 or so simple rules model Dolev-Yao intruders. A plain Maude search
for an unwanted “trusted” connection then breaks NSPK in around 100 minutes
on my laptop; the standard search for compromised keys takes a few seconds.
The students understand these models, and can modify them (e.g., to analyze
Lowe’s fix of NSPK) without problems.

NSPK is still a simpler older protocol, and Maude is not a cryptanalysis tool
(although Maude-NPA [11] is a leading one). However, a tool like the Tamarin
prover [4] is based on multiset rewriting, and has been in the news in Norway
and elsewhere for breaking our card payment systems [5,6]. Ralf Sasse from
ETH Zürich has generously given a guest the last two years where he talks
about using Maude to find news flaws in the Internet Explorer web browser as
a summer intern at Microsoft [9], and, especially, how they have used Tamarin
to break the EMV protocol [6] and the 5G standard [23]. This guest lecture has
been mentioned by some students as a highlight of the course.

System Requirements (1 lecture). I devote one lecture to introduce “system
requirements” informally. What are invariants, eventually, until, and response
properties? I explain how to analyze invariants by searching for bad states, and
how to inductively prove (by hand) that something is an invariant for all initial
states. I also discuss state-based versus action-based requirements, and various
kinds of fairness assumptions needed to prove “eventually” properties.

Formalizing andChecking SystemRequirements Using Temporal Logic
(1 lecture). I introduce linear temporal logic (LTL) and the use of Maude’s

102 P. C. Ölveczky

LTL model checker to formalize and then model check system requirements.
We then have a wealth of examples to model check.

Example 8. Consider the token-ring mutual exclusion algorithm in Example 7.
The key liveness property we want to prove is that each node executes in its
critical section infinitely often. This cannot be proved using search, but can easily
be done using LTL model checking. We define a parametric atomic proposition
inCS(o) to hold if node o is currently executing inside its critical section:

(omod MODEL-CHECK-MUTEX is protecting INITIAL . including MODEL-CHECKER .

subsort Configuration < State .

op inCS : Oid -> Prop [ctor] .

var REST : Configuration . var S : Status . var O : Oid .

eq REST < O : Node | status : S > |= inCS(O) = (S == insideCS) .

endom)

We check if each node in init executes infinitely often in its critical section:4

Maude> (red modelCheck(init, ([] <> inCS(a)) /\ ([] <> inCS(b)) /\

([] <> inCS(c)) /\ ([] <> inCS(d))) .)

result ModelCheckResult : counterexample(...)

The property does not hold: the model checker returns a counterexample where
node d never wants to enter its critical section. We therefore add the following
justice fairness assumption for the first rule: for each node o, if, from some point
on, the first rule is continuously enabled for o (that is, o’s status is outsideCS),
then the first rule must also be taken infinitely often for o (i.e., o’s status must
be waitForCS). We add the following declarations to the above module to define
the formula justAll that encodes this justice assumption:

ops waiting outside : Oid -> Prop [ctor] .

eq REST < O : Node | status : S > |= waiting(O) = (S == waitForCS) .

eq REST < O : Node | status : S > |= outside(O) = (S == outsideCS) .

op just : Oid -> Formula .

op justAll : -> Formula .

eq just(O) = (<> [] outside(O)) -> ([] <> waiting(O)) .

eq justAll = just(a) /\ just(b) /\ just(c) /\ just(d) .

We can check whether the justice fairness assumption justAll implies the
desired property:

Maude> (red modelCheck(init, justAll ->

(([] <> inCS(a)) /\ ([] <> inCS(b)) /\

([] <> inCS(c)) /\ ([] <> inCS(d)))) .)

result Bool : true �

4 ‘[]’ and ‘<>’ denote the temporal operators � and ♦, respectively, and ‘/\ and ‘->’
denote logical conjunction and implication.

Teaching Formal Methods to Undergraduate Students Using Maude 103

I have also proved by LTL model checking that all philosophers are guar-
anteed to eat infinitely often in one of the solutions to the dining philosophers
problem. This required formalizing a number of fairness assumptions.

I briefly mention other logics like CTL and CTL∗, LTL with past temporal
operators, and Meseguer’s temporal logic of rewriting, which allows us to reason
about both state-based and action-based properties.

I included temporal logic for second-year students with trepidity. This is a
completely new kind of logic for the students, which should require time and
maturity to understand. I am pleasantly surprised that the students seem to
master temporal logic with only one lecture: their exam solutions show that
they understand temporal logic formulas and can judge whether such a formula
holds in a model.

Real-Time and Probabilistic Systems (not taught). Up to this point, the
models have been untimed. However, the performance of a system is also an
important metric, whose analysis requires modeling time. Furthermore, fault-
tolerant systems must detect message losses and node crashes, which is impos-
sible in untimed asynchronous distributed systems. The course textbook intro-
duces how real-time systems can be modeled and analyzed in Maude, and also
discusses timed extensions of temporal logics.

Randomized simulations, such that those performed simulating playing black-
jack with each card drawn pseudo-randomly, do not provide performance esti-
mates with mathematical guarantees. I need more solid guarantees to quit my
day job and move to Las Vegas. My textbook therefore indicates how probabilis-
tic systems can be modeled in rewriting logic as probabilistic rewrite theories [2].
Such probabilistic models can then be subjected to statistical model checking
(SMC) using Maude-connected tools such as PVeStA [3] and MultiVesta [26],
which estimate the expected value of a path expression up to certain confidence
intervals. Although, in contrast to precise probabilistic model checking, SMC does
not give absolute guarantees, it is considered to be a scalable formal method,
which, since it is based on simulating single paths until the desired confidence
level has been reached, can be easily parallelized.

In contrast to the other chapters in the book, the book only gives a flavor
of these subjects, and does not give details about how to run Real-Time Maude
or PVeStA. I have sometimes taught this part to fourth-year students, but do
not currently teach it to second-year students.

Using Maude on Cloud Systems and the Use of Formal Methods at
Amazon (1 lecture). To give students the impression that Maude can be ap-
plied to analyze industrial designs, in the last lecture I give an overview of the use
of Maude (and PVeStA) to model and analyze both the correctness and per-
formance of cloud transaction systems such as Google’s Megastore (which runs,
e.g., Gmail and Google AppEngine), Apache Cassandra (developed at Facebook
and used by, e.g., Amadeus, CERN, Netflix, Twitter), and the academic P-Store
design, as well as our own extensions of these designs (see [7] for an overview).

104 P. C. Ölveczky

The last lecture should summarize the course: What have you learnt? What
is it useful for? Instead of singing the praises of formal methods myself, I end
the course by quoting the experiences of engineers at Amazon Web Services,
who used formal methods while developing their Simple Storage System and
DynamoDB data store, which are key components of Amazon’s profitable cloud
computing business. The engineers at Amazon used Lamport’s TLA+ formalism
with its model checker TLC. They report that formal methods have been a big
success at Amazon, and describe their experiences in the previously mentioned
paper “How Amazon Web Services Uses Formal Methods” [17] as follows:

– Formal methods found serious “corner case” bugs in the systems that were
not found with any other method used in industry.

– A formal specification is a valuable precise description of an algorithm,
which, furthermore, can be directly tested.

– Formal methods can be learnt by engineers in short time and give good
return on investment.

– Formal methods makes it easy to quickly explore design alternatives and
optimizations.

My textbook does not contain a chapter on the topics covered in this lecture.

6 Evaluation

That I have worked hard on designing what I think should be a good and acces-
sible introduction to formal methods by using Maude does not help much if the
students disagree. The all-important question is therefore: What do the students
think? Unfortunately, I have not solicited their feedback. Instead, the students
have the possibility to provide feedback anonymously on courses signed up for.
Most students do not bother to do this. Therefore, although I am trying to sum-
marize the students’ experiences the best I can, this evaluation is unscientific,
anecdotal, and may suffer from selection bias.

6.1 Summary of Student Feedback

I have gathered anonymous student feedback, administered by the department,
from 2007. In general, only 10%–15% of the students submit responses, and those
include students who quit the course during the semester.

The following tables show the cumulated response to the all-important ques-
tions “How do you rate this course in general?” and “How do you rate the level
(difficulty) of the course?” Since 2019 was the first time the course was given at
the second-year level, I also show the results from 2019 in separate columns. Fur-
thermore, since 2020 and 2021 were destroyed by/taught online due to Covid-19,
I also separate out the results from those years. In particular, I believe, again
without evidence, that the lack of (physical) lectures that make the curriculum
understandable is a larger problem for harder-to-access theoretical courses than
the more “practical” courses that students usually take. Or is Covid-19 just a
convenient scapegoat for the 2020–2021 feedback?

Teaching Formal Methods to Undergraduate Students Using Maude 105

How do you rate this course in general?

2007–2019 2019 2020–2021

Exceptionally good 15 4 8

Very good 23 3 4

Good 8 0 6

OK (neither good nor bad) 6 1 2

Not that good 1 0 3

Not good 0 0 0

Difficulty/level of the course

2007–2019 2019 2020–2021

Too difficult 1 0 2

Somewhat difficult 38 4 18

OK/Average 38 4 3

Easy 0 0 0

Too easy 0 0 0

An overwhelming majority (75–80%) of the student report that the workload
is “OK” (or average) for the number of credits (10) given.

6.2 Selected Student Comments

The evaluation form allows students to comment on the course in free-text. Below
I quote some student opinions about the course content from 2015 to 2021. What
students liked about the course:

– “Very interesting course where we learnt a lot. A unique course at the bach-
elor level in informatics in Norway.”

– “Different and powerful method for system analysis. Creative textbook.”
– “Learn a different kind of programming language. Learn about algorithms,

and how to model them to check security vulnerabilities. After finishing
the course you have relevant knowledge that some of the world’s leading
companies are looking for.”

– “Programming was fun.”
– “Introduction to a different programming paradigm.”
– “Interesting, but not too extensive, curriculum.”
– “Fun curriculum.”
– “Course content.”
– “IN2100 is the best course I have taken at the University of Oslo.”
– “Showed the importance of the topic.”
– “Interesting topic.”
– “It allows to develop complex systems, and test safety and security of critical

systems as well.”
– “Strong foundations, applicable to real systems, useful for developing robust

systems.”

106 P. C. Ölveczky

– “All in all I think this was a very fun course, clearly one of those I remember
the most from my bachelor. Maude essentially worked well, and even though
I don’t think that I will ever use it after the course, I have learnt a lot by
using it.”

– “I did not choose this course [...] but I loved every week and content.”
– “The assignments are really well balanced between theory and the entertain-

ing Maude programming parts.”
– “One of the best of the ten courses I have taken at the department.”

What the students liked less:

– “Language that is not used much or at all.”
– “Course might be difficult for many of us.”
– “Need more real world critical systems for analysis. [...] Lack of applicability

in industry.”
– “Maude is very frustrating because of bad or (in Full Maude) missing error

messages.”
– “The theory part was more difficult than the rewrite rules part.”
– “Lectures crashed with the lectures in a more “important” course.”
– “Difficult. Unnecessary. Unnecessarily complicated language. Irrelevant.”

Main complaints concern Full Maude and its “peculiarities” (lack of robust-
ness and good error messages) and that there are too few resources about Maude.
Finally, as expected, a number of students do not understand why they need to
learn a programming language that is not widely used. When teaching, we have
to emphasize again and again that we use a convenient language to teach and
illustrate general formal methods principles, so that you could easily work with
more “industrial” tools, like TLA+, after taking this course.

7 Concluding Remarks

In this paper I surveyed a few papers on, and distilled some requirements for,
teaching formal methods. I claimed that rewriting logic and Maude provide an
ideal framework that seems to satisfy these criteria. I have given an overview of
the topics I cover in my second-year course and in its accompanying textbook.
Finally, I summarized the feedback that students provide anonymously to the
university. I end this paper by trying to address some obvious questions, and by
making a suggestion to the organizers of WRLA 2024.

Is Maude really a suitable framework for introducing formal methods to second-
year undergraduate students? This is really a two-pronged question: is Maude
a good tool for teaching formal methods, and is the second year too early to
introduce formal methods?

Concerning the first question, I still think that Maude is a great choice, as I
argue in Sect. 4. It provides an intuitive functional programming style, which I
think students enjoy. Furthermore, despite taking in a lot of well-established term

Teaching Formal Methods to Undergraduate Students Using Maude 107

rewriting theory, we still manage to model and analyze fundamental distributed
algorithms and protocols, such as sliding windows, all those distributed mutual
exclusion, algorithms for distributed transaction systems, and also cryptographic
protocols like NSPK, which is very easy to model and analyze, even for students.
Maude also encourages us to teach temporal logic, which is quintessential for for-
malizing requirements of distributed systems. The by far main problem is that
I teach object-oriented modeling using Full Maude. The lack of (useful) error
messages in Full Maude understandably frustrates students, and takes away the
pleasures of modeling in Maude. It might well be a mistake to use Full Maude
for modeling object-based distributed systems; even Francisco Durán teaches
object-based modeling using (core) Maude. (Core) Maude will supposedly pro-
vide support for object-based specification in the near future; that would make
my course much better for the students, and cannot happen soon enough.

Regarding the second question, I have no answer or good methodology to
answer it. Results from the first exam for second-year students were encourag-
ing, and student feedback has been as positive as in previous years. However,
it is hard to conclude anything from exam results and other feedback in 2020
and 2021, because of Covid-19. As usual, many students quit the course during
the semester. However, I am not sure that one can gain much insight from this.
It is common in Oslo, since signing up for classes is free, so students “try out”
many courses. Furthermore, competing against a (supposedly good) introduc-
tory course on operating systems and networks for the only optional slot in the
Bachelor program is challenging.

Is the course a success? This is the million-dollar question, and, again, the jury
is still out on this one. I believe that it is fair to say that student evaluations
generally are positive. Is this due to the topics covered and the textbook, or
does the quality of the lectures and exercise seminars also play a role? Fur-
thermore, just a small fraction of the students reply to these surveys, with a
possible selection bias. Eventually, the proof is in the pudding, as they say: do
the students take the course? In a related paper [19] from 2020, I wrote that the
course—due to its precarious place in the Bachelor program—crucially relies on
word-of-mouth recommendation by other students. Then the trend looked good,
going from the usual 15–20 students to 42 students who took the exam in 2020.
But with two years of Covid19-induced closure of the university, the interaction
between students has essentially been non-existent, removing the potential for
word-of-mouth recommendation. So we are back where we were before: between
15 and 20 student will take the exam this year.

Is my way the right way to teach Maude to undergraduates? If we want to
teach Maude, is the way I do it the right way? Based on general evaluation and
what I hear from students, it is tempting to significantly reduce the material on
classic term rewriting and equational logic theory, which takes almost half the
lectures. One could then add more Part II stuff: more fundamental distributed
systems, and/or real-time and probabilistic systems. Maybe meta-programming?
Strategies? Programming “web applications” with Maude’s support for external

108 P. C. Ölveczky

objects, e.g., via sockets and file systems? Or develop Maude semantics for simple
multi-threaded imperative programming languages, which I think would be fun
for the students.

Should I remove this theory? I like the theory on termination, but cannot
convey as much enthusiasm for confluence; and students are not always enam-
ored of equational logic and inductive theorems either. Can I drop the theory
and make the course even more “practical”? If I drop confluence then also the
equational logic part will suffer; furthermore, Maude requires your specifications
to be confluent, so students should know about this. What should I do? If you,
dear reader, teach Maude or related methods, I would love to hear your opinion
and experiences. I would also love to know of interesting distributed systems
that could be included in the course, or given as exam problems.

A suggestion to the organizers of WRLA 2024. With Maude now a mature tool
with an impressive range of applications, it should be ripe for teaching formal
methods. I think that multiple groups around the world are using Maude in
teaching (mostly at the graduate level?). It would be enormously important for
our community to know about each other’s experiences, curricula, and ways
of teaching Maude-based courses. I would therefore like to wrap up this WRLA
2022 “invited experience report” by proposing that the organizer of WRLA 2024
organize a special session on using Maude for teaching, where we can share our
experiences on this important topic.

Acknowledgments. I would like to thank Kyungmin Bae for inviting me to
give an invited talk at WRLA 2022, and for patiently waiting for this paper
to be finished.

References

1. Aceto, L., Ingolfsdottir, A., Larsen, K.G., Srba, J.: Teaching concurrency: theory
in practice. In: Gibbons, J., Oliveira, J.N. (eds.) TFM 2009. LNCS, vol. 5846, pp.
158–175. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04912-
5 11

2. Agha, G.A., Meseguer, J., Sen, K.: PMaude: rewrite-based specification language
for probabilistic object systems. Electr. Notes Theor. Comput. Sci. 153(2), 213–239
(2006)

3. AlTurki, M., Meseguer, J.: PVeStA: a parallel statistical model checking and
quantitative analysis tool. In: Corradini, A., Klin, B., Ĉırstea, C. (eds.) CALCO
2011. LNCS, vol. 6859, pp. 386–392. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22944-2 28

4. Basin, D.A., Cremers, C., Dreier, J., Sasse, R.: Tamarin: verification of large-scale,
real-world, cryptographic protocols. IEEE Secur. Priv. 20(3), 24–32 (2022)

5. Basin, D.A., Sasse, R., Toro-Pozo, J.: Card brand mixup attack: bypassing the PIN
in non-Visa cards by using them for Visa transactions. In: 30th USENIX Security
Symposium, USENIX Security 2021, pp. 179–194. USENIX Association (2021)

6. Basin, D.A., Sasse, R., Toro-Pozo, J.: The EMV standard: break, fix, verify. In:
42nd IEEE Symposium on Security and Privacy, SP 2021. IEEE (2021)

https://doi.org/10.1007/978-3-642-04912-5_11
https://doi.org/10.1007/978-3-642-04912-5_11
https://doi.org/10.1007/978-3-642-22944-2_28
https://doi.org/10.1007/978-3-642-22944-2_28

Teaching Formal Methods to Undergraduate Students Using Maude 109

7. Bobba, R., et al.: Survivability: design, formal modeling, and validation of cloud
storage systems using Maude. In: Assured Cloud Computing, chap. 2, pp. 10–48.
Wiley-IEEE Computer Society Press (2018)

8. Cerone, A., et al.: Rooting formal methods within higher education curricula for
computer science and software engineering: a white paper. In: Cerone, A., Roggen-
bach, M. (eds.) FMFun 2019. CCIS, vol. 1301, pp. 1–26. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-71374-4 1

9. Chen, S., Meseguer, J., Sasse, R., Wang, H.J., Wang, Y.M.: A systematic app-
roach to uncover security flaws in GUI logic. In: IEEE Symposium on Security and
Privacy, pp. 71–85. IEEE Computer Society (2007)

10. Clavel, M., et al.: All About Maude. LNCS, vol. 4350. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-71999-1

11. Escobar, S., Meadows, C.A., Meseguer, J.: Maude-NPA: cryptographic protocol
analysis modulo equational properties. In: Aldini, A., Barthe, G., Gorrieri, R. (eds.)
FOSAD 2007/2008/2009. LNCS, vol. 5705, pp. 1–50. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03829-7 1

12. Krings, S., Körner, P.: Prototyping games using formal methods. In: Cerone, A.,
Roggenbach, M. (eds.) FMFun 2019. CCIS, vol. 1301, pp. 124–142. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-71374-4 6

13. Liu, S., Takahashi, K., Hayashi, T., Nakayama, T.: Teaching formal methods in
the context of software engineering. ACM SIGCSE Bull. 41(2), 17–23 (2009)

14. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theor.
Comput. Sci. 96, 73–155 (1992)

15. Meseguer, J., Rosu, G.: The rewriting logic semantics project. Theor. Comput. Sci.
373(3), 213–237 (2007)

16. Meseguer, J., Roşu, G.: The rewriting logic semantics project: a progress report.
Inf. Comput. 231, 38–69 (2013)

17. Newcombe, C., Rath, T., Zhang, F., Munteanu, B., Brooker, M., Deardeuff, M.:
How Amazon Web Services uses formal methods. Commun. ACM 58(4), 66–73
(2015)

18. Ölveczky, P.C.: Real-Time Maude and its applications. In: Escobar, S. (ed.) WRLA
2014. LNCS, vol. 8663, pp. 42–79. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-12904-4 3

19. Ölveczky, P.C.: Teaching formal methods for fun using Maude. In: Cerone, A.,
Roggenbach, M. (eds.) FMFun 2019. CCIS, vol. 1301, pp. 58–91. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-71374-4 3

20. Ölveczky, P.C., Meseguer, J.: The Real-Time Maude tool. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 332–336. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 23

21. Ölveczky, P.C.: Designing Reliable Distributed Systems: A Formal Methods App-
roach Based on Executable Modeling in Maude. UTCS, Springer, London (2017).
https://doi.org/10.1007/978-1-4471-6687-0

22. Park, D., Zhang, Y., Saxena, M., Daian, P., Roşu, G.: A formal verification tool
for Ethereum VM bytecode. In: Proceedings of the ESEC/FSE 2018, pp. 912–915.
ACM (2018)

23. Peltonen, A., Sasse, R., Basin, D.A.: A comprehensive formal analysis of 5G han-
dover. In: 14th ACM Conference on Security and Privacy in Wireless and Mobile
Networks, WiSec 2021, pp. 1–12. ACM (2021)

24. Roşu, G., Şerbănuţă, T.F.: An overview of the K semantic framework. J. Logic
Algebraic Program. 79(6), 397–434 (2010)

https://doi.org/10.1007/978-3-030-71374-4_1
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-642-03829-7_1
https://doi.org/10.1007/978-3-030-71374-4_6
https://doi.org/10.1007/978-3-319-12904-4_3
https://doi.org/10.1007/978-3-319-12904-4_3
https://doi.org/10.1007/978-3-030-71374-4_3
https://doi.org/10.1007/978-3-540-78800-3_23
https://doi.org/10.1007/978-1-4471-6687-0

110 P. C. Ölveczky

25. Schwartz, D.G.: Rethinking the CS curriculum. Blog at the Communications of
the ACM, May 2022. https://cacm.acm.org/blogs/blog-cacm/261380-rethinking-
the-cs-curriculum/fulltext

26. Sebastio, S., Vandin, A.: MultiVeStA: statistical model checking for discrete event
simulators. In: ValueTools, pp. 310–315. ICST/ACM (2013)

27. Vardi, M.Y.: Branching vs. linear time: final showdown. In: Margaria, T., Yi,
W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 1–22. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45319-9 1

https://cacm.acm.org/blogs/blog-cacm/261380-rethinking-the-cs-curriculum/fulltext
https://cacm.acm.org/blogs/blog-cacm/261380-rethinking-the-cs-curriculum/fulltext
https://doi.org/10.1007/3-540-45319-9_1

	Teaching Formal Methods to Undergraduate Students Using Maude
	1 Introduction
	2 Setting and Challenges
	3 How to Teach Formal Methods?
	3.1 A Few Papers on Teaching Formal Methods.
	3.2 What to Teach?

	4 Why Teaching Formal Methods Using Maude?
	5 Course and Textbook Content
	5.1 Part I: Equational Specification in Maude and Term Rewrite Theory
	5.2 Equational Logic (1 lecture)
	5.3 Part II: Modeling and Analysis of Dynamic/Distributed Systems Using Rewriting Logic

	6 Evaluation
	6.1 Summary of Student Feedback
	6.2 Selected Student Comments

	7 Concluding Remarks
	References

