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Abstract. Runtime Verification deals with the question of whether a
run of a system adheres to its specification. This paper studies run-
time verification in the presence of partial knowledge about the observed
run, particularly where input values may not be precise or may not
be observed at all. We also allow declaring assumptions on the execu-
tion which permits to obtain more precise verdicts also under imprecise
inputs. We encode the specification into a symbolic formula that the
monitor solves iteratively, when more observations are given. We base
our framework on stream runtime verification, which allows to express
temporal correctness properties not only in the Boolean but also in richer
logical theories. While in general our approach requires to consider larger
and larger sets of formulas, we identify domains (including Booleans
and Linear Algebra) for which pruning strategies exist, which allow to
monitor with constant memory (i.e. independent of the length of the
observation) while preserving the same inference power as the monitor
that remembers all observations. We empirically exhibit the power of our
technique using a prototype implementation under two important cases
studies: software for testing car emissions and heart-rate monitoring.

1 Introduction

We study runtime verification (RV) for imprecise and erroneous inputs, and
describe a solution—called Symbolic Runtime Verification—that can exploit
assumptions about the input and the system under analysis. RV is a dynamic
verification technique in which a given run of a system is checked against a
specification, typically a correctness property (see [1,13,23]). In online moni-
toring a monitor—synthesized from the specification—attempts to produce a
verdict incrementally from the input trace. Originally, variants of LTL [26] tai-
lored to finite runs were employed to formulate properties [3]. However, since
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Fig. 1. An example specification (a) and three monitors: (b) with perfect observability,
(c) with an interval abstract domain, (d) a symbolic monitor developed in this paper.
The symbolic monitor is enriched with the additional constraint that 1 ≤ ld0 ≤ 5.

RV requires to solve a variation of the word problem and not the harder model-
checking problem, richer logics than LTL have been proposed that allow richer
data and verdicts [10,14]. Lola [9] proposes Stream Runtime Verification (SRV)
where monitors are described declaratively and compute output streams of ver-
dicts from inputs streams (see also [12,21]). The development of this paper is
based on Lola.

Example 1. Figure 1(a) shows a Lola specification with ld as input stream (the
load of a CPU), acc as an output stream that represents the accumulated load,
computed by adding the current value of ld and subtracting the third last value.
Finally, ok checks whether acc is below 15. The expression acc[−1|0] denotes the
value of acc in the previous time point and 0 as default value if no previous time
point exists.

Such a specification allows a direct evaluation strategy whenever values on
the input streams arrive. If, for example, ld = 3 in the first instant, acc and ok
evaluate to 3 and tt, respectively. Reading subsequently 4, 5, 7 results in 7, 12, 16
for acc and a violation is identified on stream ok. This is shown in Fig. 1(b).

A common obstacle in RV is that in practice sometimes input values are
not available or not given precisely, due to errors in the underlying logging
functionality or technical limitations of sensors. In Fig. 1(c) the first value on ld
is not obtained (but we assume that the value of ld at instant 0 is between 1 and
5). One approach (followed in [22]) is to use interval arithmetic, which can be
easily encoded as a domain in Lola. Even after reading precisely 4, 5 and 7, at
time 4 the monitor cannot know for sure whether ok has been violated, as the
interval [12, 20] contains 15. If the unknown input on ld is denoted symbolically
by ld0 we still deduce that ok holds at time points 1 to 3. For time point 4,
however, the symbolic representation acc4 = acc3+7− ld0 = ld0+9+7− ld0 = 16
allows to infer that ok is clearly violated! This is shown in Fig. 1(d). ��
Example 1 illustrates our first insight: Symbolic Runtime Verification is more
precise than monitoring using abstract domains.
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Since an infinite symbolic unfolding of the specification and all assumptions
is practically infeasible, our online monitor unfolds the specification as time
increases. We show that our monitor is both sound and perfect in the sense that
it only produces correct verdicts and these verdicts are as precise as possible
with the information provided. However, even with an incremental unfolding of
the specification the symbolic monitor can grow as more unknowns and their
inter-dependencies are introduced. For example, in the run in Fig. 1(d) as more
unknown ld values are received, more variables ldi will be added, which makes
the size of the symbolic formula depend on the trace length. We show that
for certain logical theories, the current verdict may be still be computed even
after summarizing the history into a compact symbolic representation, whose
size is independent of the trace length. For other theories, preserving the full
precision requires an amount of memory that can grow with the trace length.
More precisely, we show that for the theories of Booleans and of Linear Algebra,
bounded symbolic monitors exist while this is not the case for the combined
theory, which is our second insight.

We empirically validate our symbolic RV approach— including constant
memory monitoring on long traces—using two realistic case studies: the Legal
Driving Cycle [5,19] and an ECG heartbeat analysis [25,27] (following the Lola
encoding from [11]). When intervals are given for unknown values, our method
provides precise answers more often than previous approaches based on inter-
val domains [22]. Especially in the ECG example, these methods are unable to
recover once the input is unknown for even a short time, but our symbolic moni-
tors recover and provide again precise results, even when the input was unknown
for a larger period.

Related Work. Monitoring LTL for traces with mutations (errors) is studied
in [17] where properties are classified according to whether monitors can be built
that are resilient against the mutation. However, [17] only considers Boolean ver-
dicts and does not consider assumptions. The work in [22] uses abstract interpre-
tation to soundly approximate the possible verdict values when inputs contain
errors for the SRV language TeSSLa [7].

Calculating and approximating the values that programs compute is cen-
tral to static analysis and program verification. Two traditional approaches are
symbolic execution [18] and abstract interpretation [8] which frequently require
over-approximations to handle loops. In monitoring, a step typically does not
contain loops, but the set of input variables (unlike in program analysis) grows.
Also, a main concern of RV is to investigate monitoring algorithms that are guar-
anteed to execute with constant resources. Works that incorporate assumptions
when monitoring include [6,15,20] but uncertainty is not considered in these
works, and verdicts are typically Boolean. A symbolic approach for monitoring
but in the setting of timed data automata and without constant memory guar-
antee (thus perfect) is also presented in [28]. Monitoring under assumptions in
form of a linear hybrid automaton, and sampling uncertainty for a different kind
of specifications and Boolean verdicts is also studied in [29]. Note that bounded
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model checking [4] also considers bounded unfoldings, but it does not solve the
problem of building monitors of constant memory for successive iterations.

In summary, our contributions are: (1) A Symbolic Runtime Verification algo-
rithm that dynamically unfolds the specification, collects precise and imprecise
input readings, and instantiates assumptions generating a conjunction of formu-
las. This representation can be used to deduce verdicts even under uncertainty,
to precisely recover automatically for example under windows of uncertainty, and
even to anticipate verdicts. (2) A pruning method for certain theories (Booleans
and Linear Algebra) that guarantees bounded monitoring preserving the power
to compute verdicts. (3) A prototype implementation and empirical evaluation
on realistic case studies.

Missing proofs, further examples and figures can be found in an extended
version of this paper [16].

2 Preliminaries

We use Lola [9] to express our monitors. Lola uses first-order sorted theories to
build expressions. These theories are interpreted in the sense that every symbol is
both a constructor to build expressions, and an evaluation function that produces
values from the domain of results from values from the domains of the arguments.
All sorts of all theories that we consider include the = predicate.

A synchronous stream s over a non-empty data domain D is a function s :
SD := T → D assigning a value of D to every element of T (timestamp). We
consider infinite streams (T = N) or finite streams with a maximal timestamp
tmax (T = [0 . . . tmax]). For readability we denote streams as sequences, so s =
〈1, 2, 4〉 stands for s : {0, 1, 2} → N with s(0) = 1, s(1) = 2, s(2) = 4. A Lola
specification describes a transformation from a set of input streams to a set of
output streams.

Syntax. A Lola specification ϕ = (I,O,E) consists of a set I of typed variables
that denote the input streams, a set O of typed variables that denote the output
steams, and E which assigns to every output stream variable y ∈ O a defining
expression Ey. The set of expressions over I∪O of type D is denoted by ED and is
recursively defined as: ED = c | s[o|c] | f(ED1 , ..., EDn

) | ite(EB, ED, ED), where
c is a constant of type D, s ∈ I ∪ O is a stream variable of type D, o ∈ Z is an
offset and f a total function D1 × · · · ×Dn → D (ite is a special function symbol
to denote if-then-else). The intended meaning of the offset operator s[o|c] is to
represent the stream that has at time t the value of stream s at t + o, and value
c used if t + o /∈ T. A particular case is when the offset is o = 0 in which case
c is not needed, which we shorten by s[now]. Function symbols allow to build
terms that represent complex expressions. The intended meaning of the defining
equation Ey for output variable y is to declaratively define the values of stream
y in terms of the values of other streams.
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Semantics. The semantics of a Lola specification ϕ is a mapping from input to
output streams. Given a tuple of concrete input streams (Σ = (σ1, . . . , σn) ∈
SD1 × · · · × SDn

) corresponding to input stream identifier s1, . . . , sn and a speci-
fication ϕ the semantics of an expression �·�Σ,ϕ : ED → SD is iteratively defined
as:

– �c�Σ,ϕ(t) = c

– �s[o|c]�Σ,ϕ(t) =

⎧
⎪⎨

⎪⎩

σi(t + o) if t + o ∈ T and s = si ∈ I (input stream)
�e�Σ,ϕ(t + o) if t + o ∈ T and Es = e (output stream)
c otherwise

– �f(e1, ..., en)�Σ,ϕ(t) = f(�e1�Σ,ϕ(t), . . . , �en�Σ,ϕ(t))

– �ite(e1, e2, e3)�Σ,ϕ(t) =

{
�e2�Σ,ϕ(t) if �e1�Σ,ϕ(t) = tt
�e3�Σ,ϕ(t) if �e1�Σ,ϕ(t) = ff

The semantics of ϕ is a map (�ϕ� : (SD1 × · · · × SDn
) → (SD

′
1

× · · · × SD′
m

)
defined as �ϕ�(σ1, ..., σn) = (�e′

1�Σ,ϕ, . . . , �e′
m�Σ,ϕ). The evaluation map �·�Σ,ϕ is

well-defined if the recursive evaluation above has no cycles. This acyclicity can
be easily checked statically (see [9]).

In online monitoring monitors receive the values incrementally. The very effi-
ciently monitorable fragment of Lola consists of specifications where all offsets
are negative or 0 (without transitive 0 cycles). It is well-known that the very
efficiently monitorable specifications (under perfect information) can be moni-
tored online in a trace length independent manner. In the rest of the paper we
also assume that all Lola specifications come with −1 or 0 offsets. Every spec-
ification can be translated into such a normal form by introducing additional
streams (flattening).

In this paper we investigate online monitoring under uncertainty and assump-
tions for three special fragments of Lola (and the constraints for uncertain input
readings and assumptions), depending on the data theories used:

– Propositional Logic (LolaB): The data domain of all streams is the Boolean
domain D = B = {tt,ff} and available functions are ∧,¬.

– Linear Algebra (LolaLA): The data domain of all streams are real numbers
D = R and every stream definition has the form c0 + c1 ∗ s0[o1|d1] + · · ·+ cn ∗
sn[on|dn] where ci, di are constants.

– Mixed (LolaB/LA): The data domain is B or R. Every stream definition is
either contained in the Propositional Logic fragment extended by the func-
tions <,= for real variables or in the Linear Algebra fragment.

3 A Framework for Symbolic Runtime Verification

In this section we introduce a general framework for monitoring using symbolic
computation, where the specification and the information collected by the moni-
tor (including assumptions and precise and imprecise observations) are presented
symbolically.
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3.1 Symbolic Expressions

Consider a specification ϕ = (I,O,E). We will use symbolic expressions to
capture the relations between the different streams at different points in time.
We introduce the instant variables xt for a given stream variable x ∈ I ∪ O and
instant t ∈ T. The type of xt is that of x. Considering Example 1, ld3 represents
the real value that corresponds to the input stream ld at instant 3 which is 7.
The set of instant variables is V = (I ∪ O) × T.

Definition 1 (Symbolic Expression). Let ϕ be a specification and A a set of
variables that contains all instant variables (that is V ⊆ A), the set of symbolic
expressions D is the smallest set containing (1) all constants c and all symbols
in a ∈ A, (2) all expressions f(t1, . . . , tn) where f is a constructor symbol of
type D1 × · · · × Dn → D and ti are elements of D of type Di.

We use ExprDϕ(A) for the set of symbolic expressions of type D (and drop ϕ and
A when it is clear from the context).

Example 2. Consider again Example 1. The symbolic expression acc3 + ld4, of
type R, represents the addition of the load at instant 4 and the accumulator
at instant 3. Also, acc4 = acc3 + ld4 is a predicate (that is, a B expression)
that captures the value of acc at instant 4. The symbolic expression ld1 = 4
corresponds to the reading of the value 4 for input stream ld at instant 1. Finally,
1 ≤ ld0 ∧ ld0 ≤ 5 corresponds to the assumption at time 0 that ld has value
between 1 and 5. ��

3.2 Symbolic Monitor Semantics

We define the symbolic semantics of a Lola specification ϕ = (I,O,E) as the
expressions that result by instantiating the defining equations E.

Definition 2 (Symbolic Monitor Semantics). The map �·�ϕ : ED → T →
ExprDϕ is defined as �c�ϕ(t) = c for constants, and

– �f(e1, . . . , en)�ϕ(t) = f(�e1�ϕ(t), . . . , �en�ϕ(t))
– �s[o|c]�ϕ(t) = st+o if t + o ∈ T, or �s[o|c]�ϕ(t) = c otherwise.

The symbolic semantics of a specification ϕ is the map �·�sym : T → 2ExprBϕ

defined as �ϕ�t
sym = {yt = �Ey�ϕ(t) | for every y ∈ O}.

A slight modification of the symbolic semantics allows to obtain equations
whose right hand sides only have input instant variables:

– �s[o|c]�ϕ(t) = st+o if t + o ∈ T and s ∈ I
– �s[o|c]�ϕ(t) = �Es�(t + o) if t + o ∈ T and s ∈ O
– �s[o|c]�ϕ(t) = c otherwise

We call this semantics the symbolic unrolled semantics, which corresponds to
what would be obtained by performing equational reasoning (by equational sub-
stitution) in the symbolic semantics.
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Example 3. Consider again the specification ϕ in Example 1. The first four ele-
ments of �ϕ�sym are (after simplifications like 0 + x = x etc.):

0 1 2 3

acc0 = ld0 acc1 = acc0 + ld1 acc2 = acc1 + ld2 acc3 = acc2 + ld3 − ld0

ok0 = acc0 ≤ 15 ok1 = acc1 ≤ 15 ok2 = acc2 ≤ 15 ok3 = acc3 ≤ 15

Using the unrolled semantics the equations for ok would be, at time 0, ok0 =
ld0 ≤ 15, and at time 1, ok1 = ld0 + ld1 ≤ 15. In the unrolled semantics all
equations contain only instant variables that represent inputs. ��

Recall that the denotational semantics of Lola specifications in Sect. 2 maps
every tuple of input streams into a tuple of output streams, that is �ϕ� : SD1 ×
· · · × SDn

→ SD
′
1

× · · · × SD′
m

. The symbolic semantics also has a denotational
meaning even without receiving the input stream, defined as follows.

Definition 3 (Denotational semantics). Let ϕ = (I,O,E) be a specification
with I = (x1, . . . , xn) and O = (y1, . . . , ym). The denotational semantics of a set
of equations E ⊆ ExprBϕ, �E�den ⊆ SD1 × · · · × SDn

× SD
′
1
× · · · × SD′

m
is:

�E�den = {(σ1, . . . , σn, σ′
1, . . . , σ

′
m) | for every e ∈ E

{xt
1 = σ1(t), . . . , xt

n = σn(t), yt
1 = σ′

1(t), . . . , y
t
m = σ′

m(t)} |= e}

Using the previous definition, �
⋃

i≤t�ϕ�i
sym�den corresponds to all the tuples of

streams of inputs and outputs that satisfy the specification ϕ up to time t.

A Symbolic Encoding of Inputs, Constraints and Assumptions. Input
readings can also be defined symbolically as follows. Given an instant t, an
input stream variable x and a value v, the expression xt = v captures the
precise reading of v at t on x. Imprecise readings can also be encoded easily.
For example, if at instant 3 an input of value 7 for ld is received by a noisy
sensor (consider a 1 unit of tolerance), then 6 ≤ ld3 ≤ 8 represents the imprecise
reading.

Assumptions are relations between the variables that we assume to hold at all
positions, which can be encoded as stream expressions of type B. For example,
the assumption that the load is always between 1 and 10 is 1 ≤ ld[now] ≤ 10.
Another example, ld[−1|0] + 1 ≥ ld[now] which encodes that ld cannot increase
more than 1 per unit of time. We use A for the set of assumptions associated
with a Lola specification ϕ (which are a set of stream expressions of type B over
I ∪ O).

3.3 A Symbolic Runtime Verification Algorithm

Based on the previous definitions we develop our symbolic RV algorithm
shown in Algorithm 1. Line 3 instantiates the new equations and assump-
tions from the specification for time t. Line 4 incorporates the set of input
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readings ψt (perfect or imperfect). Line 5 performs evaluations and sim-
plifications, which is dependent on the particular theory. In the case of
past-specifications with perfect information this step boils down to sub-
stitution and evaluation. Line 6 produces the output of the monitor.

Alg. 1: Online Symbolic Monitor for ϕ

1 t ← 0 and E ← ∅;
2 while t ∈ T do
3 E ← E ∪ �ϕ�t

sym ∪ �At�ϕ;
4 E ← E ∪ ψt;
5 Evaluate and Simplify;
6 Output;
7 Prune;
8 t ← t + 1 ;

Again, this is application depen-
dent. In the case of past speci-
fications with perfect information
the output value will be com-
puted without delay and emitted
in this step. In the case of B out-
puts with imperfect information,
an SMT solver can be used to dis-
card a verdict. For example, to
determine the value of ok at time
t, the verdict tt can be discarded if

∃ ∗ .okt is UNSAT, and the verdict ff can be discarded if ∃ ∗ .¬okt is UNSAT.
For richer domains specific reasoning can be used, like emitting lower and upper
bounds or deducing the set of constraints. Finally, Line 7 eliminates constraints
that will not be necessary for future deductions and performs variable renaming
and summarization to restrict the memory usage of the monitor (see Sect. 4).
For past specifications with perfect information, after step 5 every equation will
be evaluated to yt = v and the pruning will remove from E all the values that
will never be accessed again.

The symbolic RV algorithm generalizes the concrete monitoring algorithm by
allowing to reason about uncertain values, while it still obtains the same results
and performance under certainty. Concrete RV allows to monitor with constant
amount of resources specifications with bounded future references when inputs
are known with perfect certainty.

Symbolic RV, additionally, allows to handle uncertainties and assumptions,
because the monitor stores constraints (equations) that include variables that
capture the unknown information, for example the unknown input values. We
characterize a symbolic monitor as a step function M : 2Expr

ϕ → 2Expr
ϕ that

transforms expressions into expressions. At a given instant t the monitor collects
readings ψt ∈ Exprϕ about the input values and applies the step function to
the previous information and the new information. Given a sequence of input
readings ψ0, ψ1 . . . we use M0 = M(ψ0) and M i+1 = M(M i ∪ ψi+1) for the
sequence of monitor states reached by the repeated applications of M . We use
Φt = ∪i≤t(�ϕ�i

sym ∪ �Ai�ϕ ∪ ψi) for the formula that represents the unrolling
of the specification and the current assumptions together with the knowledge
about inputs collected up to t.

Definition 4 (Sound and Perfect monitoring). Let ϕ be a specification, M
a monitor for ϕ, ψ0, ψ1 . . . a sequence of input observations, and M0,M1 . . .
the monitor states reached after repeatedly applying M . Consider an arbitrary
predicate α involving only instant variables xt at time t.
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– M is sound if whenever M t |= α then Φt |= α for all t ∈ T.
– M is perfect if it is sound and if Φt |= α then M t |= α for all t ∈ T.

Note that soundness and perfectness is defined in terms of the ability to infer
predicates that only involve instant variables at time t, so the monitor is allowed
to eliminate, rename or summarize the rest of the variables. It is trivial to extend
this definition to expressions α that can use instant variables xt′

with (t − d) ≤
t′ ≤ t for some constant d. If a monitor is perfect in this extended definition it
will be able to answer questions for variables within the last d steps.

The version of the symbolic algorithm presented in Alg. 1 that never prunes
(removing line 7) and computes at all steps Φt is a sound and perfect monitor.
However, the memory that the monitor needs grows without bound if the number
of uncertain items also grows without bound. In the next section we show that
(1) trace length independent perfect monitoring under uncertainty is not possible
in general, even for past only specifications and (2) we identify concrete theories,
namely Booleans and Linear Algebra and show that these theories allow perfect
monitoring with constant resources under unbounded uncertainty.

4 Symbolic Runtime Verification at Work

Example 4. Consider the Lola specification on the left, where the Real input
stream ld indicates the current CPU load and the Boolean input stream usra

indicates if the currently active user is user A. This specification checks whether
the accumulated load of user A is at most 50% of the total accumulated load.
Consider the inputs ld = 〈?, 10, 4, ?, ?, 1, 9, . . . 〉, usra = 〈ff,ff,ff, tt, tt, tt,ff, . . . 〉
from 0 to 6. Also, assume that at every instant t, 0 ≤ ldt ≤ 10. At instant 6 our

acc := acc[−1|0] + ld[now]
acca := acca[−1|0] + ite(usra[now],

ld[now], 0)
ok := acca[now] ≤ 0.5 ∗ acc[now]

monitoring algorithm would yield the
symbolic constraints (acc6 = 24 +
ld0 + ld3 + ld4) and (acc6a = 1 + ld3 +
ld4) for acc6 and acc6a, and the addi-
tional one (0 ≤ ld0 ≤ 10 ∧ 0 ≤ ld3 ≤

10 ∧ 0 ≤ ld4 ≤ 10). An existential query to an SMT solver allows to conclude
that ok6 is true since acc6a is at most 21 but then acc6 is 44. However, every
unknown variable from the input will appear in one of the constraints stored
and will remain there during the whole monitoring process. ��

When symbolic computation is used in static analysis, it is not a common
concern to deal with a growing number of unknowns as usually the number of
inputs is fixed a-priori. In contrast, a goal in RV is to build online monitors
that are trace-length independent, which means that the calculation time and
memory consumption of a monitor stays below a constant bound and does not
increase with the received number of inputs. In Example 4 above this issue can
be tackled by rewriting the constraints as part of the monitor’s pruning step
using n ← ld0, m ← (ld3 + ld4) to obtain (acct = 24 + n + m), (acct

a = 1 + m)
and (0 ≤ n ≤ 10) ∧ (0 ≤ m ≤ 20). From the rewritten constraints it can still
be deduced that acc6a ≤ 0.5 ∗ acc6. Note also that every instant variable in the
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specification only refers to previous instant variables. Thus for all t ≥ 7, there is
no direct reference to either ld3 or ld4. Variables ld3 and ld4 are, individually, no
longer relevant for the verdict and it does not harm to denote ld3+ld4 by a single
variable m. We call this step of rewriting pruning (of non-relevant variables).

Let Ct ⊆ ExprBϕ be the set of constraints maintained by the monitor that
encode its knowledge about inputs and assumptions for the given specification.
In general, pruning is a transformation of a set of constraints Ct into a new set
C′t requiring less memory, but still describing the same relations between the
instant variables:

Definition 5 (Pruning strategy). Let C ⊆ ExprB be a set of constraints over
variables A and R = {r1, . . . , rn} ⊆ A the subset of relevant variables. We use
|C| for a measure on the size of C. A pruning strategy P : 2ExprB → 2ExprB is a
transformation such that for all C ∈ ExprB, |P(C)| ≤ |C|. A Pruning strategy P
is called

– sound, whenever for all C ⊆ ExprB, �C�R ⊆ �P(C)�R,
– perfect, whenever for all C ⊆ ExprB, �C�R = �P(C)�R,

where �C�R = {(v1, . . . , vn)|(r1 = v1 ∧ · · · ∧ rn = vn) |= C} is the set of all value
tuples for R that entail the constraint set C. We say that the pruning strategy is
constant if for all C ⊆ ExprB : |P(C)| ≤ c for a constant c ∈ N.

A monitor that exclusively stores a set Ct for every t ∈ T is called a constant-
memory monitor if there is a constant c ∈ N such that for all t, |Ct| ≤ c.

Previously we defined an online monitor M as a function that iteratively
maps sets of constraints to sets of constraints. Clearly, the amount of informa-
tion to maintain grows unlimited if we allow the monitor to receive constraints
that contain information of an instant variable at time t at any other time t′.
Consequently, we first restrict our attention to atemporal monitors, defined as
those which receive proposition sets that only contain instant variables of the
current instant of time. Atemporal monitors cannot handle assumptions like
ld[−1|0] ≤ 1.1 ∗ ld[now]. At the end of this section we will extend our technique
to monitors that may refer n instants to the past.

Theorem 1. Given a specification ϕ and a constant pruning strategy P for
ExprBϕ, there is an atemporal constant-memory monitor Mϕ s.t.

– Mϕ is sound if the pruning strategy is sound.
– Mϕ is perfect if the pruning strategy is perfect.

Yet we have not given a complexity measure for constraint sets. For our
approach we use the number of variables and constants in the constraints,
that is |C| =

∑
ϕ∈C |ϕ| and |c| = 1, |v| = 1, |f(e1, . . . , en)| = |e1| + · · · +

|en|, |ite(e1, e2, e3)| = |e1| + |e2| + |e3| for a constant c and a variable v.
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4.1 Application to Lola Fragments

We describe now perfect pruning strategies for LolaB and LolaLA. For LolaB/LA
we will show that no such perfect pruning strategy exists but present a sound
and constant pruning strategy.

LolaB: First we consider the fragment LolaB where all input and output streams,
constants and functions are of type Boolean. Consequently, we assume con-
straints given to the monitor (input readings, assumptions) also only contain
variables, constants and functions of type Boolean.

Example 5. Consider the following specification (where all inputs are uncertain,
⊕ denotes exclusive or) shown on the left. The unrolled semantics, shown on the
right, indicates that ok is always true.

a := a[−1|ff] ⊕ x[now]
b := b[−1|tt] ⊕ x[now]

ok := a[now] ⊕ b[now]

0 1 2 3 . . .

x0 x0 ⊕ x1 x0 ⊕ x1 ⊕ x2 x0 ⊕x1 ⊕x2 ⊕x3 . . .
¬x0 ¬x0 ⊕ x1 ¬x0 ⊕ x1 ⊕ x2 ¬x0 ⊕x1 ⊕x2 ⊕x3 . . .
tt tt tt tt . . .

However, the Boolean formulas maintained internally by the monitor are contin-
uously increasing. Note that at time 1 the possible combinations of (a1, b1, ok1)
are (ff, tt, tt) and (tt,ff, tt), as shown below (left). By eliminating duplicates from

(x0, x1) 00 01 10 11
a1 ff tt tt ff
b1 tt ff ff tt
ok1 tt tt tt tt

v1 0 1
a1 ff tt
b1 tt ff
ok1 tt tt

this table we obtain another table with two
columns which can be expressed by formulas
over a single, fresh variable v1 (as shown on
the right). From this table we can directly
infer the new formulas a1 = v1, b1 = ¬v1,
ok1 = tt, which preserve the condensed infor-

mation that a1 and b1 are opposites. We can use these new formulas for further
calculation. At time 2, a2 = v1 ⊕x2, b1 = ¬v1 ⊕x2 which we rewrite as a2 = v2,
b1 = ¬v2 again concluding ok1 = tt. This illustrates how the pruning guarantees
a constant-memory monitor. Note that this monitor will be able to infer at every
step that ok is tt even without reading any input. ��

The strategy from the example above can be generalized to a pruning strat-
egy. Let R = {r1, . . . , rm} be the set of relevant variables (in our case the
output variables st

i) and V = {s1, . . . , sn} ∪ R all variables (in our case input
variables and fresh variables from previous pruning applications). Let C be a set
of constraints over r1, . . . , rm, s1, . . . , sn, which can be rewritten as a Boolean
expression γ by conjoining all constraints.

The method generates a value table T which includes as columns all value
combinations of (v1, . . . , vm) for (r1, . . . , rm) such that (r1 = v1) ∧ · · · ∧ (rm =
vm) |= γ. Then it builds a new constraint set C′ with an expression ri =
ψi(v1, . . . , vk) for every 1 ≤ i ≤ m over k fresh variables, where the ψi are gen-
erated from the rows of the value table. The number of variables is k = �log(c)�
with c being the number of columns in the table (i.e. combinations of ri satisfying
γ). This method is the LolaB pruning strategy which is perfect. By Theorem 1
this allows to build a perfect atemporal constant-memory monitor for LolaB.
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Lemma 1. The LolaB pruning strategy is perfect and constant.

LolaLA: The same idea used for LolaB can be adapted to Linear Algebra.

Example 6. Consider the specification on the left. The main idea is that acca

acca := acca[−1|0] + lda[now]
accb := accb[−1|0] + ldb[now]
total := total[−1|0] + 1

2 (lda[now]+
ldb[now])

accumulates the load of CPU A (as
indicated by lda), and similarly accb

accumulates the load of CPU B (as
indicated by ldb). Then, total keeps the
average of lda and ldb. The unrolled
semantics is

0 1 2 . . .

ld0a ld0a + ld1a ld0a + ld1a + ld2a . . .
ld0b ld0b + ld1b ld0b + ld1b + ld2b . . .
1
2
(ld0a + ld0b)

1
2
((ld0a + ld0b)+(ld1a + ld1b))

1
2
((ld0a + ld0b) + (ld1a + ld1b) + (ld2a + ld2b)) . . .

Again, the formulas maintained during monitoring are increasing. The formulas
at 0 cannot be simplified, but at 1, ld0a and ld1a have exactly the same influence
on acc1a, acc1b and total. To see this consider the calculation of (acc1a, acc1b , total1)
as the matrix multiplication shown below on the left. The matrix in the middle
just contains two linearly independent vectors. Hence the system of equations
can be equally written as shown in the right, over two fresh variables u1, v1:

⎛

⎝
acc1a
acc1b
total1

⎞

⎠ =

⎛

⎝
1 0 1 0
0 1 0 1
1
2

1
2

1
2

1
2

⎞

⎠ ∗

⎛

⎜
⎜
⎝

ld0a
ld0b
ld1a
ld1b

⎞

⎟
⎟
⎠

⎛

⎝
acc1a
acc1b
total1

⎞

⎠ =

⎛

⎝
1 0
0 1
1
2

1
2

⎞

⎠ ∗
(

u1

v1

)

The rewritten formulas then again follow directly from the matrix. Repeating
the application at all times yields:

0 1 2 . . .
ld0a ld0a + ld1a ≡ u1 u1 + ld2a ≡ u2 . . .
ld0b ld0b + ld1b ≡ v1 v1 + ld2b ≡ v2 . . .
ld0

a+ld0
b

2
(ld0

a+ld0
b)+(ld1

a+ld1
b)

2 ≡ u1+v1

2
(u1+v1)+(ld2

a+ld2
b)

2 ≡ u2+v2

2 . . .

which results in a constant monitor. ��
This pruning strategy can be generalized as well. Let R = {r1, . . . , rm}

be a set of relevant variables (in our case the output variables st
i) and

V = {s1, . . . , sn} ∪ R be the other variables (in our case input variables or
fresh variables from previous pruning applications). Let C be a set of con-
straints maintained by our monitoring algorithm which has to be fulfilled over
r1, . . . , rm, s1, . . . , sn, which contains equations of the form c =

∑m
i=1 cri

∗ ri +∑n
i=1 csi

∗ si + c′ where c, c′, csi
, cri

are constants.
If the equation system is unsolvable (which can easily be checked) we return

C′ = {0 = 1}, otherwise we can rewrite it as shown on the left. The matrix N of
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this equation system has m rows and n columns. Let r be the rank of this matrix
which is limited by min{m,n}. Consequently an m × r matrix N ′ with r ≤ m
exists with the same span as N and the system can be rewritten (without loosing
solutions to (r1, . . . , rm)). From this rewritten equation system a new constraint
⎛

⎜
⎝

r1
...

rm

⎞

⎟
⎠ =

⎛

⎜
⎝

c1,1 . . . c1,n

...
cm,1 . . . cm,n

⎞

⎟
⎠ ∗

⎛

⎜
⎝

s1
...

sn

⎞

⎟
⎠ +

⎛

⎜
⎝

o1
...

om

⎞

⎟
⎠

set C′ can be generated which
contains the equations from the
system. We call this method the
LolaLA pruning strategy, which
is perfect and constant.

Lemma 2. The LolaLA pruning strategy is perfect and constant.

LolaB/LA. Consider the specification below (left) where i, a and b are input
streams of type R. Consider a trace where the values of stream i are unknown
until time 2, but that we have the assumption 0 ≤ i[now] ≤ 1. The unpruned
symbolic expressions describing the values of x, y at time 2 would then be in
matrix notation:

x := x[−1|0] + i[now]
y := 2 ∗ y[−1|0] + i[now]

ok := (a[now] = x[now]) ∧ (b[now] = y[now])

(
x2

y2

)

=
(

1 1 1
4 2 1

)

∗
⎛

⎝
i0

i1

i2

⎞

⎠

Fig. 2. Set of possible values of x2 and y2

Since the assumption forces all ij

to be between 0 and 1 the possi-
ble set of value combinations x and
y can take at time 2 is described
by a polygon with 6 edges depicted
in Fig. 2. Describing this polygon
requires 3 vectors. It is easy to see that
each new unknown input generates a
new vector, which is not multiple of
another. Hence for n unknown inputs
on stream i the set of possible value combinations for (xt, yt) is described by a
polygon with 2n edges for which a constraint set of size O(n) is required. This
counterexample implies that for LolaB/LA there is no perfect pruning strategy.
However, one can apply the following approximation: Given a constraint set C
over V = {s1, . . . , sn} ∪ R with R = {r1, . . . , rm} the set of relevant variables.

1. Split the set of relevant variables into RB containing those of type Boolean
and RR containing those of type Real.

2. For RB do the rewriting as for LolaB obtaining C′
B
.

3. For RR do the rewriting as for LolaLA over CLE with CLE ⊆ C being the set
of all linear equations in C, obtaining C′

R
.

4. For all fresh variables vi with 1 ≤ i ≤ k in C′
R

calculate a minimum bound
li and maximum bound gi (may be over-approximating) over the constraints
C ∪ C′

R
and build C′′

R
= C′

R
∪ {li ≤ vi ≤ gi|1 ≤ i ≤ k}.

5. Return C′ = C′
B

∪ C′′
R
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We call this strategy the LolaB/LA pruning strategy, which allows to build an
atemporal (imperfect but sound) constant-memory monitor.

Lemma 3. The LolaB/LA pruning strategy is sound and constant.

Note that with the LolaB/LA fragment we can also support if-then-else expres-
sions. A definition s = ite(c, t, e) can be rewritten to handle s as an input stream
adding assumption (c ∧ s = t) ∨ (¬c ∧ s = e). After applying this strategy the
specification is within the LolaB/LA fragment and as a consequence the sound
(but imperfect) pruning algorithm from there can be applied.

4.2 Temporal Assumptions

We study now how to handle temporal assumptions. Consider again Example 4,
but instead of the assumption 0 ≤ ld[now] ≤ 10 take 0.9 ∗ ld[−1, 0] ≤ ld[now] ≤
1.1 ∗ ld[−1, 100]. In this case it would not be possible to apply the presented
pruning algorithms. In the pruning process at time 1 we would rewrite our for-
mulas in a fashion that they do not contain ld1 anymore, but at time 2 we would
receive the constraint 0.9 ∗ ld1 ≤ ld2 ≤ 1.1 ∗ ld1 from the assumption.

Pruning strategies can be extended to consider variables which may be refer-
enced by input constraints at a later time as relevant variables, hence they will
not be pruned. A monitor which receives constraint sets over the last l instants
is called an l-lookback monitor. An atemporal monitor is therefore a 0-lookback
monitor. For an l-lookback monitor the number of variables that are referenced
at a later timestamp is constant, so our pruning strategies remain constant.
Hence, the following theorem is applicable to our pruning strategies and as a
consequence our solutions for atemporal monitors can be adapted to l-lookback
monitors (for constant l).

Theorem 2. Given a Lola specification ϕ and a constant pruning strategy P
for ExprBϕ there is a constant-memory l-lookback monitor Mϕ such that

– Mϕ is sound if the pruning strategy is sound.
– Mϕ is perfect if the pruning strategy is perfect.

5 Implementation and Empirical Evaluation

We have developed a prototype implementation of the symbolic algorithm
for past-only Lola in Scala, using Z3 [24] as solver. Our tool supports Reals
and Booleans with their standard operations, ranges (e.g. [3, 10.5]) and ? for
unknowns. Assumptions can be encoded using the keyword ASSUMPTION.1 Our
tool performs pruning (Sect. 4.1) at every instant, printing precise outputs when
possible. If an output value is uncertain the formula and a range of possible
values is printed.
1 Note that for our symbolic approach assumptions can indeed be considered as a

stream specification of type Boolean which has to be true at every time instant.
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We evaluated two realistic case studies, a test drive data emission monitor-
ing [19] and an electrocardiogram (ECG) peak detector [11]. All measurements
were done on a 64-bit Linux machine with an Intel Core i7 and 8 GB RAM. We
measured the processing time of single events in our evaluation, for inputs from
0% up to 20% of uncertain values, resulting in average of 25 ms per event (emis-
sions case study) and 97 ms per event (ECG). In both cases the runtime per
event did not depend on the length of the trace (as predicted theoretically). The
long runtime is in general due to using Z3 naively to deduce bounds of unknown
variables, other methods/specialized tools should be investigated in the future.
The longer runtime per event in the second case study is explained because of
a window of size 100 which is unrolled to 100 streams. We discuss the two case
studies separately.

Case Study #1: Emission Monitoring. The first example is a specifica-
tion that receives test drive data from a car (including speed, altitude, NOx
emissions,. . . ) from [19]. The Lola specification is within LolaB/LA (with ite),
and checks several properties, including trip valid which captures if the trip
was a valid test ride. The specification contains around 50 stream definitions in
total. We used two real trips as inputs, one where the allowed NOx emission was
violated and one where the emission specification was satisfied.

We injected uncertainty into the two traces by randomly selecting
x% of the events and modifying the value to an uncertainty interval of
±y% around the correct value. The figure on the left shows the result
of executing this experiment for all integer combinations of x and y

between 1 and 20, for one trace. The green
space represents the cases for which the mon-
itor computed the valid answer and the red
space the cases where the monitor reported
unknown. In both traces, even with 20% of
incorrect samples within an interval of ±7%
around the correct value the monitor was able
to compute the correct answer. We also com-

pared these results to the value-range approach, using interval arithmetic. How-
ever, the final verdicts do not differ here. Though the symbolic approach is able
to calculate more precise intermediate results, these do not differ enough to
obtain different final Boolean verdicts.

As expected, for fully unknown values and no assumptions, neither the sym-
bolic nor the interval approaches could compute any certain verdict, because
the input values could be arbitrarily large. However, in opposite to the inter-
val approach, the symbolic approach allows adding assumptions (e.g. the speed
or altitude does not differ much from the previous value). With this assump-
tion, we received the valid result for trip valid when up to 4% of inputs are
fully uncertain. In other words, the capability of symbolic RV to encode physi-
cal dependencies as assumptions often allows our technique to compute correct
verdicts in the presence of several unknown values.
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Fig. 3. ECG analysis. Left: symbolic approach, Right: value range approach. Green:
certain heartbeats, Yellow: potential heartbeats, Red: bursts of unknown values. (Color
figure online)

Case Study #2: Heart Rate Monitoring. Our second case study concerns
the peak detection in electrocardiogram (ECG) signals [11]. The specification
calculates a sliding average and stores the values of this convoluted stream in
a window of size 100. Then it checks if the central value is higher than the 50
previous and the 50 next values to identifying a peak.

We evaluated the specification against a ECG trace with 2700 events corre-
sponding to 14 heartbeats. We integrated uncertainty into the data in two differ-
ent ways. First, we modified x% percent of the events to uncertainty intervals of
±y%. Even if 20% of the values were modified with an error of ±20%, the sym-
bolic approach returned the perfect result, while the interval approach degraded
over time because of accumulated uncertainties (many peaks were incorrectly
“detected”, even under 5% of unknown values with a ±20% error—see front
part of traces in Fig. 3). Second, we injected bursts of consecutive errors (? val-
ues) of different lengths into the input data. The interval domain approach lost
track after the first burst and was unable to recover, while the symbolic approach
returned some ? around the area with the bursts and recovered when new values
were received (see Fig. 3).

We exploited the ability of symbolic monitors to handle assumptions by
encoding that heartbeats must be apart from each other more than 160 steps
(roughly 0.5 s), which increased the accuracy. In one example the monitor cor-
rectly detected a peak right after a burst of errors. The assumption allowed the
monitor to infer values of certain variables from the knowledge that there is no
heartbeat, which enabled in turn the detection of the next heartbeat. This is not
possible if heartbeats that are not at least 160 steps apart are just filtered out.

6 Conclusion

We have introduced the concept of symbolic Runtime Verification to monitor
in the presence of input uncertainties and assumptions on the system behavior.
We showed theoretically and empirically that symbolic RV is more precise than
monitoring with intervals, and have identified logical theories for which perfect
symbolic RV can be implemented in constant memory. Future work includes: (1)
to identify other logical theories and their combinations that guarantee perfect
trace length independent monitoring; (2) to be able to anticipate verdicts ahead
of time for rich data domains by unfolding the symbolic representation of the
specification beyond, along the lines of [2,20,30] for Booleans;
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Finally, we envision that symbolic Runtime Verification can become a general,
foundational approach for monitoring that will allow to explain many existing
monitoring approaches as instances of the general schema.
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19. Köhl, M.A., Hermanns, H., Biewer, S.: Efficient monitoring of real driving emis-

sions. In: Colombo, C., Leucker, M. (eds.) RV 2018. LNCS, vol. 11237, pp. 299–315.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03769-7 17

20. Leucker, M.: Sliding between model checking and runtime verification. In: Qadeer,
S., Tasiran, S. (eds.) RV 2012. LNCS, vol. 7687, pp. 82–87. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-35632-2 10

21. Leucker, M., Sánchez, C., Scheffel, T., Schmitz, M., Schramm, A.: Tessla: runtime
verification of non-synchronized real-time streams. In: SAC 2018, pp. 1925–1933.
ACM (2018)

22. Leucker, M., Sánchez, C., Scheffel, T., Schmitz, M., Thoma, D.: Runtime verifica-
tion for timed event streams with partial information. In: Finkbeiner, B., Mariani,
L. (eds.) RV 2019. LNCS, vol. 11757, pp. 273–291. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-32079-9 16

23. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Log. Alge-
braic Meth. Program. 78(5), 293–303 (2009)

24. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

25. Pan, J., Tompkins, W.J.: A real-time QRS detection algorithm. IEEE Trans.
Biomed. Eng. BME 32(3), 230–236 (1985)

26. Pnueli, A.: The temporal logic of programs. In: FOCS 1977, pp. 46–57. IEEE (1977)
27. Sznajder, M., �Lukowska, M.: Python Online and Offline ECG QRS Detector based

on the Pan-Tomkins algorithm (2017)
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