
Specification-based Testing for Software Product Lines

Temesghen Kahsai∗ Markus Roggenbach∗ Bernd-Holger Schlingloff†

Abstract

In this paper, we develop a testing theory for
specification-based software product line development.
Starting with a framework for the evaluation of test cases
with respect to formal specifications, we develop a notion
of enhancement, which allows to re-use test cases in a hor-
izontal systems development process. In such a process,
more and more features are added to an existing software
product. For specification-based testing, this means that the
corresponding specifications are enhanced more and more,
and that new test cases must be added to an existing test
suite in order to test the additional features. We formally
define an enhancement relation between CSP-CASL spec-
ifications, describe a test evaluation method for software
product lines based on CSP-CASL specifications, and prove
several preservation results which allow to re-use test cases.
We illustrate our approach with the example of a product
line of remote control units for consumer products.

1. Introduction

Today, very few software systems are developed from
scratch; most systems are derived by extending or enhanc-
ing previous versions. Thus, traditional engineering ap-
proaches, in which a complete system is derived from a
given set of informal or formal specifications, are only par-
tially adequate. This holds in particular for software product
lines, where a set of similar products is targeted. The CMU
SEI defines a software product line to be a “set of software-
intensive systems that share a common, managed set of fea-
tures satisfying the specific needs of a particular market seg-
ment or mission and that are developed from a common set
of core assets in a prescribed way” [3]. Thus, the individual
products in a product line have a similar “look-and-feel”,
however, they differ in that one product may offer more
functionality than the other one. In a product line, there
are low-end products with a basic set of features, special-
ized products for particular markets, and high-end products

∗Swansea University
†Humboldt University Berlin Fraunhofer FIRST

This work was supported by EPSRC under the grant EP/D037212/1.

which combine many features. For the corresponding soft-
ware development process, this means that the specification
of an advanced product is developed by enhancement and
combination of basic specifications.

For testing different elements of a product line, test cases
for basic products should be reusable in advanced products.
The design of test suites is a time-consuming engineering
task; depending on the application domain, 30% − 80% of
the overall software development costs are spent for testing.
Main activities in testing are the construction of test cases,
the execution of tests on a system-under-test (SUT), and the
evaluation of test execution results. Often, the design of a
test suite is feature-oriented: the test suite must be able to
determine if exactly the specified features are implemented.
That is, if some feature is required in the specification, the
SUT must be able to exhibit the corresponding behaviour;
vice versa, if the SUT shows some observable behaviour,
then it must be part of some specified requirement. Thus,
test suites are structured along the features of the specifica-
tion. For each feature, there should be test cases present in
the test suite to validate whether the feature has been cor-
rectly implemented.

In a software product line, the advanced product incorpo-
rates features from more basic versions. Even if all features
of the basic products have been thoroughly tested, it is nec-
essary to validate that these features still work correctly in
the enhanced version. Usually the design and testing of the
basic version is completed before the advanced version is
begun; in this case, for all basic features elaborate test cases
are available. It would be advantageous to be able to re-use
these test cases in a test suite for the advanced product.

In this paper, we study the evaluation and preservation
of test cases in specification-based software product line
development. That is, we assume that test cases are de-
veloped with or without reference to a formal specification;
test cases are assessed with respect to a particular specifica-
tion, and evaluated with respect to a particular implemen-
tation (see Figure 1 below). Each software feature can be
formalized in a separate specification; therefore, for each
feature a test suite can be developed separately. Test suites
can check for the presence or absence of a particular fea-
ture. The specification of a specific product of the product
line consists of a combination of features. We argue that

if this combination follows certain enhancement principles,
then the assessment result of a test case is preserved from
the separate feature to the combination. (On the other hand,
if the enhancement principles are violated, then inconsis-
tencies and feature interactions might occur and we cannot
guarantee re-usability of test cases.)

In [15], we defined a theory for the evaluation of test
cases with respect to a formal specification. The specifica-
tion language CSP-CASL [22] allows to formalize features
in a combined algebraic / process algebraic notation. As
CSP-CASL has a loose semantics, a specification can be ab-
stract, i.e., there may be non-determinate choices and open
design decisions which are to be settled in a later design
stage. In a formal systems development process, an abstract
specification can be refined to a concrete implementation,
where all design decisions have been fixed and which has
a deterministic behaviour. In our approach, we can build
test suites for any level of abstraction in this process. It
is possible that test cases are constructed either from the
specification or independently from it. Therefore, it is pos-
sible to structure a test suite according to the features of
the SUT. Each test case checks the correct implementation
of a certain feature according to a particular specification.
The specification determines the alphabet of the test suite,
and the expected result of each test case. The expected re-
sult is coded in a colouring scheme of test cases. If a test
case is constructed which checks for the presence of a re-
quired feature (according to the specification), we define its
colour to be green. If a test case checks for the absence
of some unwanted behaviour, we say that it has the colour
red. If the specification does neither require nor disallow
the behaviour tested by the test case, i.e., if an SUT may
or may not implement this behaviour, the colour of the test
case is defined to be yellow. During the execution of a test
on a particular SUT, the verdict is determined by compar-
ing the colour of the test case with the actual behaviour. A
test fails, if the colour of the test case is green but the SUT
does not exhibit this behaviour, or if the colour is red but the
behaviour can be observed in the SUT. The execution of a
yellow test case yields an inconclusive verdict. Otherwise,
the test passes. The validation triangle in Figure 1 shows an
overview to our testing approach.

Specification Test Cases

Implementation

determines
colour of

are constructed
with respect to

is refined
to

is derived
from ar

e
ex

ec
ut

ed
on

de
te
rm

in
es

ve
rd

ict
of

Figure 1. Validation triangle

In this paper, we investigate the extension of specifica-
tions and the re-use of test cases for software product lines.
That is, we are not concerned with refinement relations be-
tween specification and implementation in a “vertical” sys-
tems development process, but with enhancement relations
between different specifications in a “horizontal” process.
We show that with a suitable enhancement concept, it is
possible to re-use test cases from basic products for ad-
vanced products: The colour of a test case with respect
to the basic specification is the same as the colour of this
test case with respect to an enhanced specification. There-
fore, test cases which have been designed for basic features
can be re-used whenever a more advanced product is con-
ceived which includes these features. We give semantical
and syntactical conditions for the enhancement relation be-
tween specifications, show how to prove this property, and
illustrate our ideas with a simple example of a common em-
bedded device. Moreover, we report on a prototypical test
execution framework for software product lines which im-
plements our approach.

Related work There is a large body of literature on the
automatic generation of tests from formal specifications
(which is not the topic of our paper), see e.g. [9, 25]. In
[8, 7], testing from label transition systems is studied, while
in [5, 6] test generation methods for OO software are pre-
sented. All these approaches assume a finalised model or
specification, whereas we are concerned with specifications
which are being enhanced and combined from separate fea-
tures.

The concept of a software product lines (SPL) was intro-
duced in the late 1990’s (see, e.g., [11, 14]), and extensively
studied subsequently in [10, 20], with annual conferences
and a huge body of engineering literature in [4, 2]. Testing
for SPLs was investigated in [21, 17] and others; the main
focus of these papers is the informal or formal derivation
of test cases from requirement and feature models. For-
mal methods for SPLs have been studied in [16] and oth-
ers; whereas these papers are mainly concerned with verifi-
cation, we consider the combination and evaluation of test
suites with respect to a formal specification.

Outline In Section 2 we give an overview of the spec-
ification language CSP-CASL and the test evaluation the-
ory from [15]. In Section 3 we introduce our example of
a remote control unit product line, and prove the enhance-
ment property between different elements of this product
line. Subsequently, in Section 4 we derive results about the
re-use of test cases for different elements of a product line.
In Section 5 we outline the implementation of a prototype
testing framework which supports our approach.

2

2. Testing from CSP-CASL

In this section we describe the specification language
CSP-CASL and the test evaluation framework from [15].

2.1 A short introduction to CSP-CASL

CSP-CASL [22] is a formal specification language that
integrates the process algebra CSP [13, 24] with the alge-
braic specification language CASL [18]. The idea is to de-
scribe reactive systems in the form of processes based on
CSP operators, where the communications of these pro-
cesses are the values of data types specified in CASL.
CSP-CASL includes all CSP standard operators. Also the
full CASL language is available to specify data types,
namely many-sorted first order logic with sort-generation
constraints, partiality, and sub-sorting. Furthermore, the
various CASL structuring constructs are included, where the
structured free construct adds the possibility to specify data
types with initial semantics. CSP-CASL specifications can
be organized in libraries. This allows to specify a complex
system in a modular way. See [12] for an industrial case
study using CSP-CASL.

Syntactically, a CSP-CASL specification with name Sp
consists of a data part D and a process part P. The data
part is a structured CASL specification. The process part is
written in CSP, where CASL terms are used as communica-
tions. CASL sorts denote sets of communications, relational
renaming is described by a binary CASL predicate, and the
CSP conditional construct uses CASL formulae as condi-
tions. The concrete syntax of a CSP-CASL specification is

ccspec Sp = data D process P end

See Section 3 for concrete instances of such a scheme. We
often write shortly Sp = (D,P).

Semantically, a CSP-CASL specification is a family of
process denotations for a CSP process, where each model
of the data part D gives rise to one process denotation.
The definition of the language CSP-CASL is generic in the
choice of a specific CSP semantics, i.e., all denotational
CSP models mentioned in [24] are possible parameters. We
briefly sketch the semantic construction of a CSP-CASL
specification, see [22] for details. The semantics of CSP-
CASL is defined in a two-step approach. Given a CSP-CASL
(D,P) specification:

• first step: for each CASL model M of D a CSP pro-
cess P′(A) is constructed. To this end, we define for
each model M, which might include partial functions,
an equivalent model total(M), in which partial func-
tions are totalized. total(M) gives rise to an alpha-
bet of communications A = A(total(M)). In order to
deal with CSP binding, variable evaluations ν : X →

total(M) are introduced. With these notations the pro-
cess P′(A) := [[P]]empty is defined where empty denotes
the empty evaluation and [[]] describes the evaluation
according to CASL.

• second step: a denotational CSP semantics is applied
for every model M. This translates a process P′(A)
into its denotation dM in the semantic domain of the
chosen CSP model.

Given a CSP modelD, the meaning of a CSP-CASL spec-
ification Sp = (D,P) is a family of process denotations

(dM)M∈Mod(D).

In other words, every model M of the data part gives rise
to one denotation in the domain D(A) of the CSP model D
built relatively to the alphabet A = A(total(M)).

The data part D of a CSP-CASL specification Sp =
(D,P) declares a subsorted signature Σ = (S,TF,PF,P,≤)
which consists of a set of sort symbols S, a set of total func-
tions symbols TF, a set of partial function symbols PF, a
set of predicate symbols P, and a reflexive and transitive
subsort relation ≤⊆S× S – see [18] for details.

In the following, we formally define how to extend a sig-
nature by new symbols to a larger one:

DEFINITION 2.1 We say that a signature Σ =
(S,TF,PF,P,≤) is embedded into a signature
Σ′ = (S′,TF′,PF′,P′,≤′) if S ⊆ S′, TF ⊆ TF′,
PF ⊆ PF′, P ⊆ P′, and the following conditions regarding
the subsorting hold:

preservation and reflection ≤=≤′ ∩ (S× S).

weak non-extension For all sorts s1, s2 ∈ S and u′ ∈ S′ :
if s1 6= s2 and s1 ≤′ u′ ∧ s2 ≤′ u′ then u′ ∈ S.

Weak non-extension means: whenever two different sorts,
say s1 and s2 have a common supersort, say u′, in the ex-
tended signature Σ′, then u′ must already be a sort of Σ.
Thanks to the preservation and reflection property, this im-
plies that s1 and s2 have u′ as common supersort in Σ. We
write ι : Σ → Σ′ for the induced map from Σ to Σ′, where
ι(s) = s, ι(f) = f , ι(p) = p for all sort symbols s ∈ S, func-
tion symbols f ∈ TF ∪ PF and predicate symbols p ∈ P.

In the following we re-call some relevant standard nota-
tions from algebraic specification: A Σ-model M gives an
interpretation for all symbols, i.e. Ms a set for s ∈ S, Mf

is a total function for f ∈ TF, Mf is a partial function for
f ∈ PF, and Mp is a predicate for p ∈ P. Let D be a CASL
specification, let Σ be its signature. We write Mod(D) for
the class of all Σ-models that fulfil the axioms stated in D,
see [18] for details. Let Σ = (S,TF,PF,P,≤) be embed-
ded into Σ′ = (S′,TF′,PF′,P′,≤′). Then every Σ′-model
M′ defines a Σ-model M′ |ι, the so-called reduct, which

3

simply forgets about the new symbols. Formally, we define
(M′ |ι)s = M′(ι(s)) = M′s, (M′ |ι)f = M′(ι(s)) = M′f , and
(M′ |ι)p = M′(ι(s)) = M′p for all sort symbols s ∈ S, func-
tion symbols f ∈ TF∪PF and predicate symbols p ∈ P. For
a specification D′ with signature Σ′ = (S′,TF′,PF′,P′,≤′)
we define Mod(D′) |ι= {M′ |ι | M′ ∈Mod(D′)}.

Based on this semantics, [22] defines a refinement notion
;D on CSP-CASL specifications which is parametrized
over the underlying CSP model D.

(dM)M∈I ;D (d′M′)M′∈I′

iff
I′ ⊆ I ∧ ∀M′ ∈ I′ : dM′ vD d′M′ ,

where I′ ⊆ I denotes inclusion of model classes over the
same signature, andvD is the refinement notion in the cho-
sen CSP model D.

2.2 Testing from CSP-CASL

In [15], a theory for the evaluation of test cases with re-
spect to CSP-CASL specifications has been developed. In
summary, the main benefits of this theory are as follows.

• Separation of test case construction from specification
and implementation: A test case only refers to the sig-
nature of a specification. This allows to start the de-
velopment of test suites as soon as an initial, abstract
version of the specification is available, in parallel to
the development of the actual implementation.

• Separation of the test oracle and the test evaluation
problem: Test cases are constructed with respect to
an (abstract) specification and executed on a (concrete)
implementation. The specification determines the ex-
pected result of a test case, and the implementation
the verdict. Therefore, the intrinsically hard test ora-
cle problem can be solved before the actual execution,
whereas test evaluation can be done online.

• Positive and negative test cases: The intention of a
test case with respect to a specification is coded by a
colouring scheme. It is possible to construct test cases
for the intended behaviour (colour green) as well as
for unwanted behaviour (colour red) of an implemen-
tation.

• Three-valued evaluation scheme for test cases: The
colour of a test case as determined by a specification
is either green, red or yellow; the test verdict is either
pass, fail or inconclusive. If the colour of a test is de-
termined to be yellow, this indicates that the respec-
tive behaviour is neither required nor disallowed by the
specification. The test result is obtained by comparing
intended and actual behaviour of an SUT. Yellow test

cases lead to inconclusive test verdicts, indicating that
the specification is not complete in this point.

Formally, a test case is just a CSP-CASL process in the
same signature as the specification, which may additionally
use first-order variables x ∈ X ranging over communica-
tions. A linear test case is a process which can be written
as T = t1 → . . . → tn → Stop. Each test case validates
the presence or absence of some feature described in the
specification.

The colour of a test case T with respect to a CSP-CASL
specification (D,P) is defined as follows.

• colourSp(T) = green iff for all models M ∈ Mod(D)
and all variable evaluations ν : X → M it holds that:

1. traces([[T]]ν) ⊆ traces([[P]]empty) and

2. for all tr = 〈t1, . . . tn〉 ∈ traces([[T]]ν) and for all
1 ≤ i ≤ n it holds that:
(〈t1, . . . , ti−1〉, {ti}) /∈ failures([[P]]empty)

• colourSp(T) = red iff for all models M ∈Mod(D) and
all variable evaluations ν : X → M it holds that:

traces([[T]]ν) 6⊆ traces([[P]]empty)

• colourSp(T) = yellow otherwise.

Intuitively, colour green means that for any data model all
traces of the test case are possible system runs, whose exe-
cution can’t be refused. A test case is red, if for each model
some of its traces can not be executed by the system. A test
case is yellow, if the execution is possible in some model
and not possible or refused in some other model.

The execution of a test process is done with respect to
a particular SUT. The test verdict is obtained during the
execution of the SUT from the expected result defined by
the colour of the test process. In [15], we define the no-
tions of point of control and observation (PCO), which is
a mapping between primitive events of an SUT and CASL-
terms of the test case. A PCO P = (A, ‖...‖,D) of an SUT
consists of: an alphabet A of primitive events, a mapping
‖...‖ : A −→ TΣ(X) which returns for each a ∈ A a term
over Σ, and a direction D : A −→ {ts2sut, sut2ts}. ts2sut
stands for signals which are sent from the testing system to
the SUT, and sut2ts stands for signals which are sent in the
other direction.

We say that a test case T is executable at a PCO P with
respect to a specification Sp, if the mapping covers all CASL
terms occuring in the test and is injective. We also define
the execution of a test case on an SUT at a PCO. The test
verdict is obtained by comparison of the actual behaviour
of the SUT and the trace of the test case, where the non-
compliance to a green test case or compliance to a red one
leads to test failure, and the compliance to a green test case
or noncompliance to a red one leads to passing the test.

4

3 Remote Control Unit Product Line

In this section we develop an example from the embed-
ded systems domain: a product line of infrared remote con-
trol units, as they are used for home appliances such as TV,
VCR, DVD-Player etc. We give abstract and concrete spec-
ifications of various elements of this product line in CSP-
CASL and show how feature enhancement can be obtained.

On an abstract level, a remote control unit RCU can be
described as follows: there are a number of buttons which
can be pressed (one at a time), and a light emitting diode
(LED) which is capable of sending signals (bitvectors of
a certain length). The RCU has an internal table which
signal correspond to which button. Whenever a button is
pressed, it sends a corresponding signal via the LED. Such
an Abstract Remote Control Unit can be specified in CSP-
CASL as follows:
ccspec ABSRCU =
data

sort Button, Signal
op codeOf : Button → Signal;

process
AbsRCU = ?x : Button→ codeOf (x)

→ AbsRCU

end
Basic remote control units as they were produced in the
1970’s had e.g. 12 buttons (i.e., b0 . . . b9, bOnOff, bMute),
where the corresponding signals are 16-bit key-codes (e.g.,
0000.01010.0000001 for b1) – see Figure 2. There are var-
ious standards for remote controls; one of these defines that
the first 4 bits identify the company ID, the next 5 bits rep-
resent the device ID (i.e. TV, DVD, etc.), while the last 7
bits identify which button was pressed. This can be speci-
fied in CSP-CASL as follows:
ccspec BRCU =
data

sort Button, Signal
ops b, b, . . . , b, bOnOff, bMute : Button;
free type Bit ::= |
then LIST[sort Bit]

then
sort Signal = {l : List[Bit] •#l = }
op codeOf : Button → Signal;

prefix : List[Bit] = [] + +[]
axioms

codeOf (b) = prefix++[];
. . .
codeOf (b) = prefix++[];
codeOf (bMute) = prefix++[];
codeOf (bOnOff) = prefix++[];
∀ b : Button • ∃ l : List[Bit] •
codeOf (b) = prefix ++l

process

BRCU = ?x : Button→ codeOf (x)→ BRCU

end
Without proof, we mention that BRCU is a refinement of
ABSRCU: ABSRCU ;D BRCU, i.e., the specification
BRCU is a correct implementation of the specification AB-
SRCU.

Soon after the first generation, the market demanded
more comfortable devices with more functionality and,
thus, more buttons. Modern remote control units have about
50-200 buttons. For the example, we assume that in the
Extended specification the buttons bvolup and bvoldn for con-
trolling the volume and bchup and bchdn for zapping though
channels were added, with appropriate key-codes. In CSP-
CASL, such an extension can be specified by defining a sort
EButton which is an extension (superset) of sort Button. Of
course, in the extended specification, the domain of opera-
tion codeOf must be suitably extended. Here is the abstract
version of an extended remote control unit:
ccspec ABSERCU =
data

sorts Button < EButton; Signal
op codeOf : Button → Signal;

codeOf : EButton → Signal;
process

AbsERCU = ?x : EButton→ codeOf (x)
→ AbsERCU

end
Since the process AbsERCU communicates in a richer data
structure, ABSERCU is not a refinement of ABSRCU.

For a concrete implementation of the abstract extended
specification, we use the supersorting and overloading fea-
tures built into CASL. To this end, we import the data
part of BRCU, named BRCUDATA, and define a super-
type EButton of Button, which includes four new buttons.
The function codeOf : EButton → Signal is in overload-
ing relation with the function codeOf : Button → Signal.
Therefore, the CASL semantics ensure that both functions
yield the same result for elements of type Button.
ccspec ERCU =
data BRCUDATA then

free type EButton ::= sort Button
| bvolup | bvoldn
| bchup | bchdn

op codeOf : EButton→ Signal
axioms

codeOf (bvolup) = prefix++[];
codeOf (bvoldn) = prefix++[];
codeOf (bchup) = prefix++[];
codeOf (bchdn) = prefix++[];

process
ERCU = ?x : EButton→ codeOf (x)→ ERCU

end
Again, without proof, we mention that

5

ABSERCU;DERCU. However, BRCU and ERCU
are not in a refinement relation, again, as the process of
ERCU uses enhanced data structures. If more and more
functions are added to a device, buttons need to be reused.
That is, some buttons have a main and alternate inscription
and there is a special button balt; if this button is pressed
the key-code of the subsequently pressed button changes
according to the alternate inscription. Basically, the button
balt serves as a modifier of the next button. This enhance-
ment differs from the previous one, since it requires the
device to distinguish between two states (whether the balt

modifier button has been pressed or has not been pressed),
and it enforces a modification in the process part of the
specification. The following is an (abstract) specification
of a RCU with Modifier enhancing the extended RCU.
To this end, we import the data part of ERCU, named
ERCUDATA.
ccspec MERCU =
data ERCUDATA then

free type MButton ::= sort EButton | balt
sort AltButton = {x : MButton • x = alt}
op codeOfAlt : EButton→ Signal

process
MERCU =

?x : EButton→ codeOf (x)→MERCU
2 bAlt →?x : EButton→ codeOfAlt(x)
→MERCU

end
As the codeOfAlt is not in overloading relation with
codeOf , after pressing the button bAlt the remote control can
send out different signals for the buttons pressed. The spec-
ification MERCU is abstract in so-far, as the functionality
of codeOfAlt is not further specified. In order to demon-
strate the integration of features in a software product line
development, we show how to reuse specification modules.
A universal remote control is a device which can be used for
TV, VCR, and DVD players. For this purpose, it has a button
mode, which allows the user to cycle through the three op-
eration modes (TV, VCR, DVD). The specification URCU
builds onto the specification ERCU, as well as on similar
built specifications ERCUDDVD and ERCUVCR.
ccspec URCU =
data { ERCUDATA and ERCUDATADVD

and ERCUDATAVCR }
then sort NewButton

op mode : NewButton
process

let TV =?x : Button→ codeOf (x)→ TV
2 mode→ DVD

DVD=?x : Button→ codeOfDVD(x)→ DVD
2 mode→ VCR

VCR=?x : Button→ codeOfVR(x)→ VCR
2 mode→ TV

in TV end

Figure 2. Basic Remote Control Unit (BRCU) –
Screenshot from our Java implementation

3.1 Theory of enhancement

Analyzing the step from ABSRCU to ABSERCU, we
can observe that all models of the data part of ABSRCU
can be extended to models of the data part of ABSERCU.
In algebraic specification this property is known as conser-
vative extension, which is defined more precisely as

Mod(D) = Mod(D′) |ι

where D and D′ are CASL specifications with signatures Σ
and Σ′, respectively, and Σ is embedded in to Σ′.

Extensions with new symbols not necessarily are con-
servative. For an example, consider the following speci-
fications BAS and EXT, where the new symbol c in EXT
imposes a constraint on the symbols a and b inherited from
BAS. Thus, models with M(a) 6= M(b) of BAS are not
included in Mod(EXT) |ι and EXT is not a conservative ex-
tension of BAS.

spec BAS =
sort S
op a, b : S

end

spec EXT =
sort S < T
ops a, b : S; c : T
axioms c = a; c = b

end
[23] compiles a comprehensive set of proof rules to

establish that one specification conservatively extends an-
other. For instance, the extension by the CASL construct
‘operation definition’ is conservative. In the following, we
will use some of these rules in order to establish enhance-
ment relations.

In the semantical construction of CSP-CASL, signature
embeddings lead to alphabet embeddings:

LEMMA 3.1 Let the signature Σ be embedded into Σ′.
Let M′ be a Σ′ model. Then there exists an injection
α : A(β(M′|ι))→ A(β(M′)) from the alphabet of the reduct
of M′ to the alphabet of M′.

6

In analogy to the reduct on data, we define now a reduct
on process denotations:

DEFINITION 3.2 Let A and A′ be sets such that there ex-
ists an embedding α : A → A′. Let, as usual in CSP, X
denote the symbol for successful termination. α extends in
a canonical way to an injections α : A ∪ {X} → A′ ∪ {X}
with α(X) = X and, by point-wise application, to a map
on strings α : A∗X → A′∗X.

1. Let T ′ ⊆ A′∗X be a set of traces. Then we define its
reduct along α as T ′|α= {t ∈ A∗X | α(t) ∈ T ′}.

2. Let F′ ⊆ A′∗X × P(A′) be a set of failures. Then we
define its reduct along α as F′ |α= {(s,X) ∈ A∗X ×
P(A) | ∃(s′,X′) ∈ F′ • α(t) = t′∧α(X) = X′∩α(A)}.

Note that our definitions subtly differ from the concept of
eager abstraction and lazy abstraction as discussed, e.g., in
[24]. Eager and lazy abstractions hide the new events in all
traces – our approach, however, ignores traces that include
new events.

CSP requires semantic denotations to be ‘healthy’, i.e.,
they have to fulfil certain constrains such as “a trace deno-
tation must be non-empty and prefix-closed”, see [24]. Pro-
cess denotations over T andF remain healthy under reduct:

LEMMA 3.3 With the same notations as above the follow-
ing holds.

1. If T ′ is healthy over T , the so is T ′|α.

2. If (T ′,F′) is healthy over F , the so is (T ′|α,F′|α).

Now we define the central notion of enhancement be-
tween specifications.

DEFINITION 3.4 Let Sp = (D,P) and Sp′ = (D′,P′) be
CSP-CASL specifications, and let Σ and Σ′ be the signa-
tures of D and D′, respectively. Let Σ and Σ′ be the sig-
natures of D and D′, respectively. Let ι and α be the in-
duced embeddings. Sp′ is an enhancement of Sp, denoted
by Sp�Sp′, if

1. Σ is embedded into Σ′,

2. Mod(D) = Mod(D′) |ι, and

3. for all M′ ∈Mod(D′) it holds that
traces([[P]]empty) = (traces([[P′]]empty)) |α

and
failures([[P]]empty) = (failures([[P′]]empty)) |α

CSP-CASL enhancement guarantees preservation of be-
haviour up to the first communication that lies outside the
original alphabet. This observation is captured in the fol-
lowing proof principle:

THEOREM 3.5 (EXTERNAL CHOICE ENHANCEMENT)
Let Sp = (D,P =?x : s → P′), let Sp′ = (D′,P =?x : s →
P′ 2?y : t′ → Q′), let Σ and Σ′ be the signatures of D and
D′, respectively, let S be the set of sorts in Σ. If

1. Σ is embedded into Σ′, Mod(D) = Mod(D′) |ι, and

2. for all u ∈ S it holds that D′ |= ∀ x : u, y : t′ • x 6= y,

then Sp�Sp′.

Theorem 3.5 allows us to prove ERCU�MERCU. First,
we have to adjust the process part of MERCU to the syn-
tactic pattern stated in the theorem. To this end, we use
the law a → R =?x : {a} → R[x/a] in order to trans-
form bAlt →?y : EButton → codeOfAlt(y) → MERCU
into ?z : AltButton →?y : EButton → codeOfAlt(y) →
MERCU. Concerning the data part MERCU is a conser-
vative extension of ERCU, as all added symbols are new,
and, if they relate to old ones, they follow a definitional
extension pattern. Thanks to the CASL free type balt is dif-
ferent from all values of EButton. Thus, both conditions
of Theorem 3.5 hold. In a similar way, we can establish
with Theorem 3.5 that ERCU�URCU. Note, however,
that ¬(ERCUDVD�URCU), as the DVD functionality is
only available after pressing the mode button.

The enhancement from BRCU to ERCU makes use of
overloading and added supersorts. To capture this technique
by a characterization theorem, we introduce an extension
operation, first on CASL signatures, then on CSP-CASL pro-
cesses.

DEFINITION 3.6 1. Given a mapping extend : S → S′

on sort names, we define

extend(f) = f : extend(s1) × · · · × extend(sk) →
extend(s) for a function symbol f : s1 × · · · × sk → t,

extend(p) = p : extend(s1) × · · · × extend(sk) for a
predicate symbol p : s1 × · · · × sk,

extend(x : s) = x : extend(s) for a variable x of type s
and

extend(f (t1, .., tk)) =
extend(f)(extend(t1), .., extend(tk) for a CASL term
f (t1, . . . , tk),

2. Σ is embedded into Σ′ with a mapping extend : S→ S′

if Σ is embedded into Σ′, TF′ = TF ∪ extend(TF),
PF′ = PF ∪ extend(PF), P′ = TF ∪ extend(P), and
≤′ is the minimal subsort relation with ≤⊆≤′ and
(s, extend(s)) ∈≤′.

The setting of Definition 3.6 ensures that any new function
and predicate symbols in Σ′ are in overloading relation with
the old symbols of Σ.

For CSP-CASL processes, extend is the identity with the
following two exceptions:

7

• extend(t→ P) = extend(t)→ extend(P)

• extend(?x : s→ P) =?x : extend(s)→ extend(P)

THEOREM 3.7 (SUPERSORT ENHANCEMENT) Let
Sp = (D,P), let Sp′ = (D′,P′), let Σ and Σ′ be the
signatures of D and D′, respectively, let S and S′ be the sets
of sorts in Σ and Σ′, respectively, let extend : S → S′ be a
mapping on sort names. If

1. Σ is embedded into Σ′ with the mapping extend,

2. Mod(D) = Mod(D′) |ι, and

3. P′ = extend(P),

then Sp�Sp′.

With Theorem 3.7 we can prove that BRCU�ERCU:
To this end we define the map extend to be the iden-
tity on all sorts with the exception with the exception of
extend(Button) = EButton. Clearly, the signatures are em-
bedded with extend. As we define codeOf only for the
new values, we have a conservative model extension. Ob-
viously, extend maps the process of BRCU to the process
of ERCU. Thus, all three conditions are true and there-
fore BRCU�ERCU. Similarly, Theorem 3.7 allows us to
prove that ABSRCU�ABSERCU.

Presumably the demonstrated extension technique ap-
plies to more process operators, e.g., to sequential compo-
sition, external choice, internal choice, parallel.

Overall, the various relations between the specification
of our product line of remote control units is summarized in
Figure 3.

ABSRCU ABSERCU

BRCU ERCU

MERCU

URCU

�

�

 D D

�

�

Figure 3. Remote Control SPL

4 Enhancement and Test Case Re-use

The previously defined enhancement relations allow for
the re-use of results established w.r.t. the original specifi-
cation: Test cases preserve their colouring and remain exe-
cutable.

THEOREM 4.1 Let Sp and Sp′ be CSP-CASL specifica-
tions with Sp�Sp′. Let T be a test process over Sp. Then

1. colourSp(T) = colourSp′(T).

2. Let P be a PCO.

If T is executable at P with respect to Sp, then T is
executable at P with respect to Sp′.

In the following we use the first of these results in order
to inherit test colouring along enhancements.

4.1 Remote Control Test cases

In this section we design some test cases for the RCU
specifications and show the re-use of test cases as well as the
preservation of colours described in the previous section.
The first set of test cases is designed to test ABSRCU:

A0 : u : Button→ codeOf (u)→ Stop
A1 : u : Button→ v : Signal→ Stop
A3 : u : Button→ w : Button→ Stop

Here, u, v and w are variable over the indicated sorts.
Thanks to the refinement and the enhancement results

summarized in Figure 3, test cases T over ABSRCU are
also test cases over all the other specifications. With respect
to their colouring we obtain e.g. the following inheritance
relations:

• colourABSERCU(T) = colourABSRCU(T) thanks to en-
hancement.

• colourBRCU(T) = colourABSRCU(T) thanks to refine-
ment.

• colourERCU(T) = colourABSRCU(T), where we can
either use the connection over BRCU or over AB-
SERCU.

This means for our three test cases A0,A1 and A2 that their
colour is the same in all specification mentioned in Figure 3,
where their colouring can be determined by looking at AB-
SRCU only, i.e., the specification with the smallest number
of axioms. For the colouring we obtain the following result
respect to ABSRCU:

A0 A1 A2

AbsRCU G Y R

A next set of test cases is designed to test BRCU:

T0 : Stop
T1 : b1 → Stop
T2 : b1 → codeOf (b1)→ b6 → codeOf (b6)→ Stop
T3 : b1 → b6 → Stop
T4 : b0 → (prefix ++[0000101])→ Stop

The following table shows how these test process are
coloured with respect to BRCU.

T0 T1 T2 T3 T4

BRCU G G G R R

8

The empty observation T0 is green with respect to all
specifications. T1 is green for BRCU as BRCU cannot
refuse the event b1 after the empty trace. The same holds
for T2, since BRCU cannot refuse the signal of b1 after the
event of b1. T3 consists of a sequence of two button presses
and therefore is red for BRCU. T4 however is red for BRCU
due to a wrong signal event, i.e. codeOf (b0) 6= codeOf (b5).
Similarly to the result above, these test cases preserve these
colours w.r.t. ERCU, MERCU and URCU.

In order to test the new features available in a the product
line, new test cases have to be designed which use the new
symbols. E.g., for ERCU the following test cases do this:

T5 : b1 → codeOf (b1)→ bVolUp → codeOf (bVolUp)→ Stop
T6 : bChUp → codeOf (bChUp)→ Stop
T7 : bChDn → codeOf (bChDn)→ b1 → Stop
T8 : bChUp → bVolDn → Stop
T9 : bChUp → codeOf (bVolUp)→ Stop

These test process are coloured with respect to ERCU in
the following way:

T5 T6 T7 T8 T9

ERCU G G G R R

These test cases preserve these colours w.r.t. MERCU and
URCU.

5 Implementation

In this section we consider the evaluation of test cases
w.r.t. CSP-CASL specifications from an implementation
point of view. We also report on a prototypical framework
for test execution. Figure 4 illustrates the basic flow of the
testing process from a CSP-CASL specification, going into
more details than Figure 1.

Figure 4. Testing from CSP-CASL

Our testing framework essentially consist of two parts
which all have tool support:

1. We use CSP-CASL-prover [19] to verify the colour of
a test case. To this end we use the syntactic characteri-
zation of the test colouring as defined in [15]. We also
verify that a test case T is executable for the chosen
PCO, see [15] for the definition.

2. Given a coloured test case and a particular SUT, our
Test Execution and test Verdict program TEV, auto-
matically runs a test against the SUT and automatically
determines the test verdict.

In the following we discuss a prototype of TEV. Figure
5 shows a screen shot of the TEV front-end. In TEV we
choose a coloured test case, e.g. T2 with colour green and
an implementation, e.g. J BRCU, which is a Java imple-
mentation of BRCU. TEV automatically executes and eval-
uates the test on the SUT – Figure 2 shows the animation of
J BRCU where button6 has been pressed. In terms of
executing tests against the SUT, we have implemented in
Java the various version of the remote control discussed in
section 3.

Figure 5. Testing Framework from CSP-CASL

In order to make the connection between the SUT and the
testing system we use abbot [1], which is a package that
enables to test Java AWT components. We setup a method
that initialize the system under test and automatically finds
the components of the system to be tested. In the case of
the remote control unit it finds the different buttons. In or-
der to execute test cases we instantiate robot-like objects,
which automatically stimulate the SUT. For the execution
of a test, we set a timeout of 2 secs as the period of time in
which a signal is expected from the RCU. Depending on the
colour of the test case and the response from the SUT, TEV
determines automatically the test verdict. Figure 5 shows a
test protocol of the execution of test case T2 at J BRCU. As
the colour of T2 w.r.t. BRCU is green, the expected signals

9

are correct and no timeout has occurred, the test verdict is
Pass.

6 Summary and Future Work

In the paper, we have developed a framework for the en-
hancement of specifications and the re-use of test cases for
software product lines. On the example of an embedded
system, we developed a notion of specification enhance-
ment which allows to add new user interfaces and extended
behaviour to a system. These operations are fundamental
for the feature-oriented engineering of a product line.

We proved that with our definition, the expected result
of a test case is preserved; therefore, this notions allows to
reuse test cases throughout a product line. We implemented
a prototypical test execution framework, which automati-
cally executes test cases and determines the test verdict on
the fly. In the future, we plan to extend the capabilities of the
testing framework, incorporate automated provers, and per-
form some larger case studies. On the theory side, there are
other notions of enhancement which are not covered by our
definition. For example, in object-oriented systems, re-use
is by inheritance of signatures and methods: The enhanced
version of a software product may inherit certain fields and
classes, and redefine others. In order to re-use test suites for
such a setting, general substitution operators for test cases
will be necessary.

Acknowledgement The authors would like to thank
Erwin R Catesbeiana (jr) for enhancing our knowledge on
product lines.

References

[1] Abbot Java Gui Test framework.
http://abbot.sourceforge.net.

[2] International Workshop on Software Product Line Testing
2007. http://www.biglever.com/split2007.

[3] Software Engineering Institute, Carnegie Mellon.
http://www.sei.cmu.edu.

[4] Software Product Line Conference 2008.
http://www.lero.ie/SPLC2008.

[5] S. Barbey, D. Buchs, and C. Péraire. A theory of
specification-based testing for object-oriented software. In
EDCC-2, London, UK, 1996. Springer-Verlag.

[6] R. V. Binder. Testing object-oriented systems: models, pat-
terns, and tools. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1999.

[7] E. Brinksma, W. Grieskamp, and J. Tretmans, editors. Per-
spectives of Model-Based Testing. IBFI, Schloss Dagstuhl,
Germany, 2005.

[8] E. Brinksma and J. Tretmans. Testing transition systems:
an annotated bibliography. In Modeling and verification of
parallel processes. Springer, 2001.

[9] M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker, and
A. Pretschner. Model-Based Testing of Reactive Systems:
Advanced Lectures (Lecture Notes in Computer Science).
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2005.

[10] P. Clements and L. M. Northrop. Software product lines:
practices and patterns. Addison-Wesley, 2001.

[11] P. C. Clements and N. Weiderman. Second international
workshop on development and evolution of software archi-
tectures for product families. Technical Report CMU/SEI-
98-SR-003, Carnegie Mellon University, 1998.

[12] A. Gimblett, M. Roggenbach, and H. Schlingloff. Towards
a formal specification of an electronic payment systems in
CSP-CASL. In Revised Selected Papers of WADT’04, LNCS
3423. Springer, 2005.

[13] C. A. R. Hoare. Communicating Sequential Processes. Pren-
tice Hall, 1985.

[14] M. Jazayeri, A. Ran, and F. van der Linden. Software
architecture for product families: principles and practice.
Addison-Wesley Longman Publishing Co., Inc., 2000.

[15] T. Kahsai, M. Roggenbach, and B.-H. Schlingloff.
Specification-based testing for refinement. In M. Hinchey
and T. Margaria, editors, SEFM 2007, pages 237–247. IEEE
Computer Society, 2007.

[16] T. Kishi and N. Noda. Formal verification and software
product lines. Commun. ACM, 49(12):73–77, 2006.

[17] J. D. McGregor. Testing a software product line. Technical
Report CMU/SEI-2001-TR-022, Carnegie Mellon Univer-
sity, Software Engineering Institute, December 2001.

[18] P. D. Mosses, editor. CASL Reference Manual. LNCS 2960.
Springer, 2004.

[19] L. O’Reilly, Y. Isobe, and M. Roggenbach. Integrating The-
orem Proving for Processes and Data. In CALCO-jnr 2007.
University of Bergen, 2008.

[20] K. Pohl, G. Böckle, and F. J. van der Linden. Software Prod-
uct Line Engineering. Foundations, Principles, and Tech-
niques, volume XXVI. Springer, 2005.

[21] K. Pohl and A. Metzger. Software product line testing. Com-
mun. ACM, 49(12):78–81, 2006.

[22] M. Roggenbach. CSP-CASL – A new integration of process
algebra and algebraic specification. Theoretical Computer
Science, 354:42–71, 2006.

[23] M. Roggenbach and L. Schröder. Towards trustworthy spec-
ifications i: Consistency checks. In WADT’01, LNCS 2267.
Springer, 2002.

[24] A. Roscoe. The theory and practice of concurrency. Prentice
Hall, 1998.

[25] M. Utting and B. Legeard. Practical Model-Based Testing:
A Tools Approach. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2006.

10

