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Abstract. In this paper, we report and reflect on successful technology
transfer from Swansea University to Siemens Mobility over the years
2007–2022. This transfer concerns formal software verification technology
for interlocking computers. It spans over Technology Readiness Levels
TRL 1-7 and was reported on in two REF Impact Case Studies, in 2014
and 2021 [17,18].

To Jan

Who shows us that
excellence in research, both foundational and applied, and
technology transfer go hand in hand.

1 A signalling problem and our approach to solving it

Interlockings are safety-critical systems which form an essential part of rail con-
trol systems. They are often realised as programmable logic controllers pro-
grammed in the language Ladder Logic, cf. IEC standard 61131 [8]. In the con-
text of rail signalling systems, they provide a safety layer between a (human or
automatic) controller and the physical track which guarantees safety principles
such as: before a signal can show proceed, all train detection devices in the route
indicate the line is clear. Rail authorities such as the UK Rail Safety and Stan-
dards Board as well as rail companies such as Siemens Mobility have defined
such safety principles (currently, we work with about 350 principles) that shall
guarantee safe rail operation. This poses the research question of how one can
verify that a given program written in Ladder Logic fulfils a safety property, i.e.,
a logical representation of a safety principle.

Our journey to answer this question went, up to now, through three phases,
cf. Fig. 1. A number of themes stayed invariant in all of them, though each phase
shed its specific light on them: how to ensure faithful models of the software
and its desired properties? what program size can be treated? who can use the
produced artefacts? how can different components interact with each other?

The first phase concerns Theoretical Foundations, cf. Section 2. In terms
of artefacts involved, all are paper-based documents, speaking about faithfully
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Artefacts Documents 1st Prototype 2nd Prototype

Theme Theoretical Academic Technology
Foundations Experiments Transfer

Faithful modelling LL-programs as Capturing ‘All’ safety properties
transition systems rail-specific from standards

safety properties

Scalability ‘Small’ theory only Slicing Optimised encoding

Usability Mathematical reader Tool programmer Industry standard

Interoperability Semantic ‘Whatever goes’ Bespoke Siemens
preservation formats

Fig. 1. The three phases of our journey.

representing Ladder Logic programs and their properties in propositional logic
and first order logic. Only programs of a few lines length can be treated manually.
Academics can work out examples. It is key to preserve semantics between the
different artefacts (logics and automata), cf. Example 1 below.

The next phase was on building a 1st Prototype for carrying out Academic
Experiments. As a proof of concept, selected rail-specific safety principles were
modelled in first order logic and transformed into propositional formulae. Ab-
straction through program slicing turned out to be a necessity in order to verify
interlocking programs of small railway stations with the SAT solvers and com-
puting power available in 2010. The 1st Prototype could be operated mainly by
the original tool developers. Its components were written in different languages
with data exchange through text files.

The performance of the 1st Prototype was promising enough to support de-
velopment of a 2nd Prototype, starting a process of Technology Transfer, i.e., for
performing verification in the industrial setting of Siemens Mobility. Safety prop-
erties were systematically encoded in first order logic, their transformation to
propositional logic was proven to be semantics-preserving using a temporal first
order logic. In terms of scalability, optimised encodings of the safety properties
were developed. The 2nd Prototype was developed with Rail Engineers as users
in mind. All software was written in C] and bespoke Siemens Mobility interfaces
were used to guarantee interoperability with existing Siemens Mobility tools.

Utilizing the notion of Technology Readiness Levels (TRLs)1, the rest of the
paper describes our journey through these three phases. The paper concludes
with a perspective on the final phase: establishing an improved 2nd Prototype
as a standard tool in interlocking design.

This paper can be read in different ways. The domain expert on Ladder Logic
will find out about concrete, state-of-the-art steps of how to verify Ladder Logic
programs of industrial size. The formal methods expert or industrial research
manager will find a report on a successful technology transfer together with
reflections on lessons learnt.

1 Technology Readiness Levels, HORIZON 2020, Annex G



An early version of this paper appeared as an extended abstract in the pro-
ceeding of Isola’21 [3].

2 Theoretical foundations

We discuss the theoretical foundations of our first prototype. This includes basic
principles (TRL1) and the formulation of a technology concept (TRL2).

2.1 Textbook knowledge on verifying finite transition systems

The following definition is standard:

Definition 1. Let x̄ = (x1, . . . , xn), x̄′ = (x′1, . . . , x
′
n), and ī = (i1, . . . , im) be

vectors of Boolean variables, for some m,n ≥ 0. Given propositional formulae
I(x̄) (the initialisation condition) and T (x̄, ī, x̄′) (the transition condition), we
define a labelled transition system S = (S,−→, Init) as follows:

• The set of all Boolean vectors S = {0, 1}n is the set of states;

• −→ ⊆ S × {0, 1}m × S is the transition relation given by

s
i−→ s′ :⇐⇒ T (s, i, s′) evaluates to 1;

• Init = {s ∈ S | I(s) evaluates to 1}.

We say that a state s is reachable in S, if there exists a (possibly empty)
sequence of transitions from a state init ∈ Init to s. We write Reachable(S) for
the set of reachable states of S.

Given a propositional formula P (x̄), we say the transition system S has
safety property P if P (s) evaluates to 1 for all s ∈ Reachable(S).

Example 1. Fig. 2 shows the transition system defined by the initialisation con-
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Fig. 2. A finite transition system

dition I = x ∧ y and the transition condition



T =
(
x′ ←→ (¬x ∧ y)

)
∧

(
y′ ←→ y

)
∧

(
z′ ←→ a⊕ y′

)
over the vectors (x, y, z), (x′, y′, z′) and (a) of Boolean variables. The initial
states are marked by double circles. Considering the property P = x∨ y, we can
see that it holds for all reachable states; however, the property Q = y ∧ z does
not hold, as, e.g., the state 010 is reachable.

The following Theorem attests to the fact that various verification methods
can be applied to such transition systems.

Theorem 1. Let S be a transition system as in Definition 1, and let P (x̄) be a
propositional formula representing a safety property.

Inductive Verification: Provided

• I(x̄) −→ P (x̄) and

• P (x̄) ∧ T (x̄, ī, x̄′) −→ P (x̄′)

hold, then S has safety property P .

Inductive Strengthening: Let Inv(x̄) be a propositional formula such that
Inv(s) evaluates to 1 for all s ∈ Reachable(S). Provided

• I(x̄) −→ P (x̄) and

• P (x̄) ∧ Inv(x̄) ∧ T (x̄, ī, x̄′) −→ P (x̄′)

hold, then S has safety property P .

Bounded Model Checking: If S has safety property P , then for all k ≥ 0:

I(x̄) ∧ T (x̄, ī, x̄′) ∧ T (x̄′, ī′, x̄′′) ∧ · · · ∧ T (x̄(k−1), ī(k−1), x̄(k)) −→ P (x̄(k)).

(In the above, given a vector of boolean variables z, we denote by z̄(m) a
vector in which each variable has m prime symbols.)

Applying Theorem 1 to Fig. 2, we observe the following.

• Inductive Verification cannot be used to show that S has property P , as it
considers all states rather than only reachable states; this over-approximation
provides a false positive resulting from the unsafe state 001 being reachable
from the safe but unreachable state 101.

• Inductive Strengthening can be used to show that S has property P , using
the invariant Inv = ¬((x ∧ ¬y ∧ z) ∨ (x ∧ ¬y ∧ ¬z)).

• Bounded Model Checking can be used to show that S does not have the
property Q: I(x̄) ∧ T (x̄, ī, x̄′) → Q(x̄′) does not hold as I(110) evaluates to
1, T (110, 0, 010) evaluates to 1, but Q(010) evaluates to 0.

The three verification methods listed in Theorem 1 can be decided utilising
SAT solving. All conditions listed are of the form |= ϕ for some propositional
formula ϕ, i.e., we need to determine if a formula ϕ is valid. This is equivalent
to determining if ¬ϕ is satisfiable.

Definition 1 and Theorem 1 can be extended to cater for safety properties P
that speak about several consecutive states and also take inputs into account.



2.2 Verifying propositional safety properties of Ladder Logic
programs

The operation of an interlocking (IXL) can be described in terms of the following
imperative program:

Algorithm 1: PLC Operation

input : Sequence of values
output: Sequence of values

initialisation
while (true) do

read (Input) %% read
State′ ← LadderLogicProgram(Input, State) %% process
write (Output′) & State ← State′ %% update

After initialisation of the system’s state, the IXL runs in a non terminating
loop. This loop consists of three steps: First, the IXL reads Input, a set of values;
based on this Input and the IXL’s current State, utilizing a Ladder Logic pro-
gram, the IXL computes its next state State′ which also includes some Output′

values; finally, the PLC writes Output′ and updates its state.
Ladder Logic, defined in the IEC standard 61131 [8], is a graphical program-

ming language for PLCs. It gets its name from its ladder-like appearance for
programs. We consider a sublanguage of Ladder Logic, which from a mathemat-
ical point of view is a subset of propositional logic.

Definition 2. Let I and C be finite, disjoint sets of Boolean variables, where I
represents input variables and C = {c1, . . . , cn} represents n distinct state/output
variables, from which we define a set of update state/output variables C ′ =
{c′1, . . . , c′n}. A Ladder Logic formula ψ is a propositional formula of the
form

ψ ≡ (c′1 ↔ ψ1) ∧ (c′2 ↔ ψ2) ∧ · · · ∧ (c′n ↔ ψn)

in which, for each i ∈ {1, . . . , n}, vars(ψi) ⊆ I∪{c′1, . . . , c′i−1}∪{ci, . . . , cn}. The
conjuncts of ψ are referred to as rungs; and the restriction on variables ensures
that the update value c′i of each rung depends only on input variables along with
update values (c′j with j < i) from earlier rungs and non-update values (ck with
k ≥ i) from the previous cycle.

Formula T from Example 1 is a Ladder Logic formula. Processing program
T with Algorithm 1 runs it through the states as shown in Fig. 2, provided the
initialisation step sets the initial states according to formula I.

This connection allows to apply the verification methods listed in Theorem 1
to prove that a propositional safety property holds for a Ladder Logic program.

2.3 Translating generic safety principles to track plan specific ones

Safety principles, as stated by the UK Rail Safety and Standards Board or rail
companies such as Siemens Mobility, are often formulated in tables, with one



column providing preconditions for an effect such as “movement authority can
be given”, and further columns indicating the kind of route (main or shunting)
to which a rule applies. The table entries are written in natural language. As
such, the first step towards verification is to formalise such safety principles in,
e.g., many-sorted first order logic (FOL) with variables ranging over entities such
as points, signals, routes and track segments, resulting in predicates describing
track layout and system state.

Example 2. The safety principle

For all pairs of distinct routes that share a track segment,
at most one route is set to ‘proceed’.

can be formalised as

∀rt , rt ′ ∈ Route .∀ts ∈ Segment . rt 6= rt ′ −→(
(part of(ts, rt) ∧ part of(ts, rt ′)

)
−→ ¬

(
route set(rt) ∧ route set(rt ′)

)
The following Theorem attests to the fact that, given a concrete track plan,

formulae expressing safety principles in FOL can be translated to a logically
equivalent formula in propositional logic (PL).

Theorem 2.

1. Every formula in FOL is logically equivalent to a formula in prenex normal
form (i.e., a formula is written as a string of quantifiers and bound variables,
followed by a quantifier-free part).

2. Assuming that the carrier of a sort symbol s is freely generated by finitely
many constant symbols c1, . . . , ck : s,
• ∀x ∈ s . ϕ(x) ↔ ϕ(c1) ∧ · · · ∧ ϕ(ck) and

• ∃x ∈ s . ϕ(x) ↔ ϕ(c1) ∨ · · · ∨ ϕ(ck).

The formula in Example 2 is in prenex normal form. Using quantifier replacement
as formulated in Theorem 2, a typical resulting subformula looks like:(

part of(ts54 , rt26 ) ∧ part of(ts54 , rt27 )
)

−→ ¬
(
route set(rt26 ) ∧ route set(rt27 )

)
This subformula contains two different kinds of predicates. The first kind con-
cerns the topology of a track plan: part of(ts54 , rt26 ). The property, if track
segment 54 is part of route 26, can automatically be evaluated by analysing the
track plan under discussion. The second kind concerns the state of the inter-
locking: route set(rt26 ). This predicate, including its application to a constant,
corresponds to a variable in the Ladder Logic program under discussion.

Outcomes:

General safety principles can be formalised within in FOL.
Then they are translated into track plan specific safety properties in PL.
Such properties in PL can be verified for Ladder Logic programs.



3 Technology prototype

Having developed a sound formal basis, our work moved towards developing a
verification process for Siemens Mobility. The main goal here was to provide an
academically built, prototypical tool chain that allowed for experimental proof of
concept (TRL3) and a technology that was validated in the controlled setting of
an academic environment (TRL4). Many groups have worked on similar projects.
As an example, we mention here Groote et al. who, as early as 1995, applied
software verification to a real world interlocking [9].

3.1 Automatising translations

The first aspect of our tooling concerns transformation between data formats.
For our setting, the following data translations were required:

• Ladder Logic Programs L represented in Siemens Westrace format needed
parsing and automatic translations to our defined transition system ψ(L) (in
a suitable formal format).

• Our first order logic safety principles needed translating into propositional
logic instances specific to the given track plan T .

• A process for translating counterexamples from failed model checking at-
tempts into a insightful format was needed.

We briefly explore initial tools that were developed, to overcome these challenges.
For detailed reading we refer to [10,11,12,13].

The verification tool created by Kanso [12] and James [10] consisted of two
underlying programs, one concerned with verification and the other concerned
with safety properties. The general outline of these tools is shown in Fig. 3
and Fig. 4. The verification component of the tool was predominantly pro-

Ladder Logic Parser

Verification Process

Formulae Generator

SAT Solver

Formal safety
Condition

Ladder Logic
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Verification
Result

Scripts
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Example

Fig. 3. Architecture of the verification tool.

grammed using Haskell. As input, it takes a Ladder Logic program and a formal
safety condition obtained from the safety condition generator. This program
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Fig. 4. Architecture of the Safety Condition Generator.

firstly uses a Ladder Logic parser to parse the Ladder Logic program into an
internal abstract syntax for propositional formula. Using this propositional for-
mula, and the safety condition (given by the process below), the program con-
structs either a pair of inductive formulae to be verified, or a bounded model
checking problem. These formulae are then passed to a SAT solver to be verified.
Depending on the result from the SAT solver, the program would then either
report that the system was safe, or provide a counterexample showing the sys-
tem to be unsafe; the counterexample would be run through a series of scripts
to present it in pictorial form for the engineers at Siemens Mobility to study.

From Fig. 4, we can see that there are two inputs to the program for generat-
ing safety conditions to be used in the verification phase. One is an informal first
order safety condition, given in a language defined by Kanso [12]. The other is a
railway plan constructed out of two further parts: a railway topology describing
the layout of the railway via an encoding in Prolog, and a Java mnemonic wrap-
per. The name space of the railway topology used for signals, points and other
entities differs from the name space of the concrete Ladder Logic program. For
this reason, a specific name space mnemonic wrapper was created in Java. This
wrapper is responsible for converting names used in the railway topology into
concrete names used within the Ladder Logic program.

Given these inputs, the safety condition generation program transforms the
informal safety condition into a series of propositional formulae to be verified.
The propositional formulae would contain concrete names instead of the abstract
names that were given in the informal safety condition. For example the word
“point” could be replaced by the actual point “TP101”. These names are gained,
as explained above, from the Prolog encoding and Java wrapper.

3.2 First academic experiments

Initial experiments conducted using the produced tool chain were based on two
small interlocking programs (each around 300 rungs in size) and around five
safety principles. The results [12,10] highlighted the following.

• Inductive verification can be successfully applied to verify properties of
‘small’ interlockings, although some properties could not be verified due
to false-positives (see Theorem 1). Strengthening the approach to include



k-induction [10] (also know as temporal induction [5]), which aims to avoid
such false positives, was not feasible due to the size of the problems.

• The bounds that were practically explored using bounded model checking
were fairly limited in size. However, applying bounded model checking al-
lowed successful error detection (with run times stretching over hours).

• Presenting counterexamples that only included information on the final vio-
lating state were less useful in identifying underlying issues than studying (in
a somewhat laborious manner) counterexample traces produced by bounded
model checking.

3.3 Improving verification through slicing

During the development of these results, it was clear that any potential abstrac-
tions that could be formulated to reduce the size of the state space for verification
would greatly improve the applicability of the tool. The proposed approaches for
the verification of Ladder Logic programs quickly give rise to large formulae to be
verified. As the formula size increases, both the space and time requirements in-
crease. This increase leads to a rather small bound (approximately 2 000) on the
number of iterations of a Ladder Logic program that could be verified. Hence, in
a somewhat hand-in-hand nature whilst running initial experiments, a program
slicing abstraction was developed [10,11] following ideas presented in [9,6].

The intuition behind slicing is that the variables occurring in a safety con-
dition often depend only on some part of the Ladder Logic program, and hence
parts that have no effect on the safety condition can be removed. At a high level,
the approach takes the following steps.

Step 1: Extract variables from safety conditions. Given a safety condition
ϕ, we extract its variables U = vars(ϕ).

Step 2: Calculate dependant variables. Calculate all the variables of the
Ladder Logic formula that affect the variables in U . To do this, we begin
at the last rung Ri ≡ c′i ↔ ψi of the Ladder Logic formula and compare
its variable c′i with the set of variables U . If c′i ∈ U , then we add all the
variables occurring in ψi to the set U . This step is repeated for each rung
until a fixed point U is reached.

Step 3: Extract dependant rungs. Using the variable set U , we remove all
rungs that do not affect the safety condition. To do this, we construct the
set

index =
{
i ∈ {1, . . . , n} | ci ∈ U or c′i ∈ U

}
.

We then remove from the original program all rungs Ri whose indices do not
appear in index. The result ψϕ is the sliced version of program ψ.

Example 3. Considering the finite transition system in Example 1 and the safety
property P = x ∨ y, we can construct a sliced version of the propositional for-
mulae. Here we can compute the variables in the formulae that affect the set
U = {x, y} of variables from our safety property. In particular, the formulae



defining the values of x and y are both required, but the formula defining z is
not. We can thus remove z from our transition system as it does not affect the
values in U . This results in the transition system given in Fig. 5.

Fig. 5. The transition system from Example 1 after slicing

In [10] we proved the following theorem:

Theorem 3. Let ϕ be a safety condition over a Ladder Logic formula ψ. The
transition system induced by ψ has safety property ϕ iff the transition system
induced by ψϕ has safety property ϕ.

Slicing proved effective in the two interlockings with which we experimented.
For the first interlocking, the number of rungs was reduced, on average, from
331 rungs to 60 rungs. For the second interlocking, the number of rungs was
reduced, on average, from 238 rungs to 25 rungs [11].

The novelty of our approach was that we gave the first proof that slicing
is correct with respect to reachable states [10,11]. We also demonstrated that
the above approach gave a significant reduction – a full order of magnitude
on average – in the size of the state space required for verification of the five
initial properties considered. For the first of the two interlockings with which we
experimented. the number of rungs was reduced, on average, from 331 rungs to 60
rungs. For the second interlocking, the number of rungs was reduced, on average,
from 238 rungs to 25 rungs. For full details and results we refer to [12,10].

Outcomes:

The 1st prototype fully automatically verifies Ladder Logic programs.
With slicing, it can effectively handle small IXLs (∼ 300 rungs).
General safety properties are translated into location specific ones.



4 Technology transfer

In the latest phase of development, a substantial effort has been put towards re-
developing the technology stack. This has seen new formats developed for data
along with a complete re-writing of the verification tool. This has allowed the
demonstration of the verification process within the operational environment of
signalling system design at Siemens Mobility (TRL 7). Here we highlight the
main scientific and technological challenges.

4.1 Logic rework

From a methodological point of view, in the logical approach developed in Sec-
tion 2 one could see a number of weaknesses. The first concerns the nature of the
safety properties under discussion. By their very nature, they are temporal prop-
erties relating consecutive states. However, we formulated them in FOL without
modelling the temporal aspect. The second weakness is that, when translating
a generic safety property in FOL to a track plan specific one in PL, for each
track plan we are building a specialised logic. For instance, the truth of the for-
mula part of(ts54 , rt26 ) depends on the track plan under discussion. Diaconescu
discusses how to build logics (institutions) with predefined types [4]. The final
weakness concerns the application of a hybrid specification. Verification is car-
ried out in PL, whilst the translation of generic safety properties to track plan
specific properties is carried out in FOL with predefined types. These two logics
are combined only by the sharing of signature elements rather than by a semantic
integration.

Addressing the first and the last of these points, we sketch here a temporal
logic based on ideas published in Gruner et al. [7]. Signatures are many sorted,
first-order logic signatures. A model at a point of time is a pair (T, I) where
T is a track plan and I is a propositional model for all propositional variables
associated with T , e.g. I(S106.G) ∈ {true, false}. Sorts and functions are given
a fixed interpretation according to the track plan, e.g.,

• SignalT = {S100, ...} : iff T has signals S100, ...

• routesOfT (s) = {r1, ..., rn} : iff in T, signal s has routes r1, ..., rn

Predicates obtain their interpretations usually from a combination of looking
up information from both the track plan T and the propositional model I:
p isInCorrectPositionForT,I r holds iff

• case 1: in T , p needs to be in reverse for r and I(p.RL) is true

• case 2: in T , p needs to be in normal for r and I(p.NL) is true

Here, p is a point, r is a route, and p.NL and p.RL are variables in the Ladder
Logic program representing point p being set to normal or reverse position re-
spectively. The models of a signature are sequences of the form (T, I0), (T, I1), ...,
i.e., the track plan in the first component stays constant, only the state of the
propositional variables is changing.



Formulae are standard first order logic formulae, where predicate symbols can
also appear with up to k primes, k ≥ 0. The prime indicates that a predicate
shall be evaluated in the k-th successor state.

Given k+1 models (T, I0), . . . , (T, Ik), satisfaction of a formula is satisfaction
as in first order logic, where l primed predicates are evaluated over (T, Il). A
formula ϕ holds in a sequence 〈(T, I0), (T, I1), . . . 〉, iff for all i ≥ 0 the formula
ϕ holds over (T, Ii), . . . , (T, Ii+k).

4.2 Data formats, interoperability and efficiency

A large focus of the redevelopment was on both expansion of the number of in-
terlocking safety principles to cover the full standard (approximately 350 prop-
erties) and interoperability of the tool with existing Siemens Mobility formats.
Here, the following core technology changes were made:

Systematic documentation of Ladder Logic variable naming schemes. Differ-
ent interlockings use various naming schemes for variables. Typically these are
dependant on the type of signalling scheme being deployed and the geographic
location of the interlocking. Here, to allow for generalisability of the verification
process, an XML schema was defined that allows for parameterisation of the
verification process by a naming scheme.

Rewrite of the verification engine with a focus on efficiency. The underlying
Haskell verification engine was rewritten in C#. Here, the main focus was on
improvements in efficiency and ensuring Siemens Mobility development processes
for developing safety critical software we followed.

Representation of Safety Properties. In order to provide a standardised lan-
guage for Safety Properties, a new XML schema was defined that captured first
order logic with predicates describing objects that occur within the railway do-
main. Rather than having an ad-hoc definition, these predicates were designed to
align with an existing Siemens Object Model used internally to capture railway
components. However, the language was also influenced by the earlier Prolog
formats and included predicates to describe states of variables (such as in the
next step). All 350 safety principles were then modelled within this language. To
ease readability of the XML, an XSLT transformation was defined to produce
HTML-viewable formulae. This also allowed for independent validation of the
modelling. Finally, a C# module was developed to translate the XML properties
down into the concrete condition format used by the verification engine which
we developed. This translation included a mapping for variable names as defined
by the given XML mapping presented above.

Professional UI supporting verification work-flow. An extensive user inter-
face was developed in C# allowing signalling engineers to interact with the
verification process. Here, not only were obvious features implemented such as
file interactions, but also strategies for verification were introduced that involved
imposing order on proof attempts (for example inductive, then bounded model
checking) along with parallelisation of proof attempts. Another feature that was
heavily explored was dealing with particularly large and lengthy counterexam-
ples. This led to a parser for counterexamples being developed along with features



for filtering and the dynamic selection of variables based on the failing property.
Here, earlier work on counterexample visualisation was used as a motivation [16].

4.3 Technicalities of real world constraints

During the redevelopment, the verification process was actively tested against
a number of more complex interlockings (see Section 4.4). During this, several
unexpected phenomena were observed that challenged the underlying theoretical
foundations of the tool. There were also improvements made to the efficiency of
the verification engine thanks to insights from domain knowledge.

Fleeting outputs. Fleeting outputs are regarded as outputs that “flip” their
value for a single cycle of the interlocking. Such outputs can cause counterexam-
ples when model checking; however, in practice, this flip happens at a rate that
is quicker than can be observed on the railway, and thus is not too concerning
for signalling engineers. Here, a strategy was devised to allow checks that can
ignore fleeting outputs if requested by the engineer during verification. Logically,
‘Fleeting outputs’ require more than two successive states to be encoded into a
safety property, i.e., changing a formula from x̄ and x̄′ to x̄1, x̄2, . . . , x̄k, k = 3
appears to be enough. This is, however, a check that should only be enabled
after careful consideration of the original counterexample.

Boundary based properties. A number of interlocking safety principles concern
the operation of the interlocking with respect to the boundary regions of the
railway it controls. Here, verification of these particular principles became a
challenge as it became apparent that the principles relied on assumptions made
about a bordering interlocking controlling an adjacent region. Here, the decision
was made that such assumptions would be documented, and an option provided
within the use interface to verify with or without this assumption being included
as an additional constraining formula when verifying.

Optimised encoding of safety properties. During tests, it was observed that
the underlying translation of safety properties was simpler/more efficient if prop-
erties were expressed in a particular manner. For example,

∀x . ϕ(x)→
(
∀y . ψ(x, y)→ ξ(x, y)

)
leads to faster verification than a property of the form

∀x, y .
(
ϕ(x) ∧ ψ(x, y))→ ξ(x, y)

)
We believe this is due to the falsified cases of the precondition being large

when a condition is expressed for a concrete interlocking.
Invariants based on design decisions. Finally, optimisations to the verification

procedure were also devised thanks to extended discussions around variables
within the Ladder Logic program. Inevitably, some variables exhibit inherent
relationships thanks to design decisions. A typical example would be a classic
SR latch where, if the reset bit is set, we know the output will be reset. This
can allow for constraints on these variables to be added as invariant formulae
to the model checking procedure, in turn constraining the state space. Here we
have yet to systematically analyse the effect of this on verification.



4.4 Fully functional prototype at Siemens Mobility

As documented in our REF 2021 impact case study [18], there is now a fully
functioning Ladder Logic Verifier running at Siemens Mobility. It has roughly 350
safety principles implemented, taken from various standards and developed from
Siemens test objectives. This 2nd prototype is fully integrated into the Siemens
Mobility ecosystem of IXL development tools and has been demonstrated in
Siemens Mobility operational environment through the verification of about 10
interlockings with up to 12 000 rungs and 75 000 variables. Safety checking of one
IXL takes about two hours. The verification approach has uncovered mistakes
in IXLs that Siemens Mobility deems non-detectable by testing.

One unresolved challenge is that there are safety properties with can neither
be decided by inductive verification nor by bounded model checking: inductive
verification fails; and bounded model checking does not find a counterexample
within reasonable bounds, meaning the property may or might not hold. In our
verification practice, depending on the IXL under discussion, about 35–40% of
all properties fall into this category.

Outcomes:

The 2nd prototype is fully integrated in the Siemens Mobility ecosystem.
Large IXLs can now be verified against 350 properties within two hours.
But 35–40% of an IXL’s safety properties cannot be decided.

5 Future development

Though our 2nd prototype is a big step towards the ultimate goal to automat-
ically verify Ladder Logic programs, there are still a number of aspects to be
addressed before it is complete and qualified (TRL 8) and is proven in the op-
erational environment (TRL 9).

In terms of completeness, it is necessary to include decision procedures that
allow to effectively prove or disprove all safety properties. Section 5.1 and Sec-
tion 5.2 discuss ongoing work to address this. In terms of introducing the tech-
nology, key enablers and inhibitors to the acceptance and adoption of utilising
the 2nd prototype within Siemens Mobility need to be identified, and, based on
a data collection, it remains to be shown that overall it is beneficial to use this
new technology. Our plans in this direction are discussed in Section 5.3.

5.1 IC3 algorithm

In order to address the 35–40% of safety properties that cannot be decided
with the verification technologies implemented in the 2nd prototype, the MRes
project by Bryant [2] investigated if Bradley’s IC3 algorithm [1] would offer a



suitable solution. Bryant could show that with IC3, all properties can effectively
be decided. Here, runtime per verification task was smaller than a second.

5.2 Invariant finding via reinforcement learning

It is accepted that so-called invariants, properties which hold for all states under
which a system operates, can help reduce occurrences of false positives. However,
automated deduction of these invariants remains a challenge. We are currently
exploring the use of reinforcement learning [19] where agents are used to build a
dataset of observed states. These observations are then used to compute correla-
tion coefficients between all variables composing a Ladder Logic program. This
in turn allows proposals for candidate invariant properties [14,15].

5.3 Measuring cost and benefit

In an interdisciplinary project, spanning Business Management, Engineering and
Computer Science we plan to identify key enablers and inhibitors to the accep-
tance and adoption of utilising the 2nd prototype within Siemens Mobility. To
this end, we will embed a longitudinal comparative study to align data collec-
tion with Siemens Mobility (i.e., within each development and testing cycle, a
parallel stream embedding the Ladder Logic Verification will be added in order
to gather data enabling robust comparisons). As part of this data collection, in-
sight will be gained through the interaction with the technical and management
teams responsible for setting up and carrying out contracts to understand the
complex dynamics at play and identify factors that may prevent the organisa-
tion from accepting and embracing the new methodology. Such interaction will
be both of a formal and informal nature, spanning meeting observations, inter-
views, focus groups and semi-quantitative surveys. The multi-faceted nature of
the data gathered will enable the development of a robust business case for the
introduction and adoption of the novel methodology within Siemens Mobility.

Ideal Outcomes:

Our verifier is integral to any IXL development at Siemens Mobility.
It efficiently decides all properties under discussion.
Rail authorities accept its proofs as evidence within certification.

6 Summary

For us, one important learning outcome of this long-lasting technology trans-
fer project is that it becomes only clear at the end of each phase what the
next challenges will be. Having understood the theory (as given in Section 2),
it was clear what transformations needed to be implemented and that coun-
terexamples would need to be presented in a user friendly way, leading to the



1st prototype (as discussed in Section 3). Driven by the need to integrate with
the Siemens Mobility ecosystem and follow Siemens practices, the 2nd prototype
was created (as discussed in Section 4). Here, experience from the 1st prototype
aided in system architecture and data type choices. In addition, a closer working
relationship with Siemens Mobility allowed for extensive experimentation and
brought in deeper domain knowledge. This led to a number of optimisations.
The Siemens Mobility research team is now convinced by the technology. How-
ever, there is future work to be done (see Section 5). A formal business case
remains to be made demonstrating the advantages of the process. Furthermore,
experience gained whilst evaluating the second prototype towards verification
coverage demonstrates that further verification methods are needed.

Overall, our journey turns out to be a far longer one than expected. Orig-
inally, perhaps as naive academics, we thought that the 1st prototype would
be the end. When the decision came to build the 2nd prototype, we thought
that this would then be the end. Having now implemented the 2nd prototype,
we understand that there is still further to go towards a fully deployed tech-
nology. Overall, the journey up to now (excluding natural periods of inactivity)
has taken about eight years and allowed us to gain expertise on the process of
technology transfer.

Thanks to a long standing collaboration between industry and academia, it
has been possible to explore the applicability of a set of formal methods to a
challenge in the real world (with all its complexities). Though our endeavour
continues, substantial progress has been made and there is honest belief by all
involved that the above stated ideal outcomes will be achieved.
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