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Abstract. Since its introduction by Goguen and Burstall in 1984, the
theory of Institutions has been one of the most widely accepted formal-
izations of abstract model theory. This work was extended by a number
of researchers, José Meseguer among them, who presented General Log-
ics; an abstract framework that complements the model theoretical view
of Institutions by defining the categorical structures that provide a proof
theory for any given logic. In this paper we intend to complete this pic-
ture by providing the notion of Satisfiability Calculus, which might be
thought of as the semantical counterpart of the notion of proof calculus,
that provides the formal foundations for those proof systems that use
model construction techniques to prove or disprove a given formula, thus
“implementing” the satisfiability relation of an institution.

1 Introduction

The theory of institutions, presented by Goguen and Burstall in [1], provides
a formal, and generic, definition of what a logical system is from a model the-
oretical point of view. This work evolved in many directions: in [2], Meseguer
complemented the theory of institutions by providing a categorical characteri-
zation for the notions of entailment system, also called π-institutions by other
authors in [3], and the corresponding notion of proof calculi; in [4, 5] Goguen and
Burstall, and Tarlecki extensively investigated the ways in which institutions can
be related; in [6], Sannella and Tarlecki studied how specifications in a logical
system can be structured [6]; in [7], Tarlecki presented an abstract theory of soft-
ware specification and development; in [8] and [9], Mossakowski and Tarlecki,
and Diaconescu respectively, proposed its use as foundation for a heterogeneous
environment for software specification. It should be noted that Institutions have

? The author gratefully acknowledge the support of the National Science and Engi-
neering Research Council of Canada and McMaster University.



also been used as a very general version of abstract model theory [10], offering
a suitable formal framework for addressing heterogeneity in specifications [11,
12], including applications to UML [13] and other languages related to computer
science and software engineering.

The basic idea underlying Meseguer’s work is the extension of entailment
systems with a categorical construction expressible enough to capture the notion
of proof in an abstract way. In Meseguer’s words:

A reasonable objection to the above definition of logic5 is that it
abstracts away the structure of proofs, since we know only that a set Γ of
sentences entails another sentence ϕ, but no information is given about
the internal structure of such a Γ ` ϕ entailment. This observation,
while entirely correct, may be a virtue rather than a defect, because
the entailment relation is precisely what remains invariant under many
equivalent proof calculi that can be used for a logic.

The previous remarks show that, intuitively, the notion of proof calculus (to
be presented later on) provides an implementation of the entailment relation
of a logic. Before Meseguer’s work, there was an imbalance in the definition
of a logic (in the context of institution theory) by not taking into account its
deductive aspects. Meseguer concentrates exclusively on the proof theoretical
aspects, of a logic, providing not only the definition of entailment system, but
also complementing it with the notion of proof calculus in order to obtain what
he calls a logical system. We believe he moved that imbalance in favour of models
towards the syntactic aspect, ignoring the fact that the same lack of operational
view he observes in the definition of entailment system now appears with respect
to the notion of satisfiability (i.e., the satisfaction relation of an institution). This
observation was motivated by the fact that several tools in computer science rely
on model construction, either for proving properties, as with model-checkers,
or for finding counterexamples, as with tableaux techniques. These techniques
constitute an important stream of research in logic; in particular, these methods
play an important role in automated software validation and verification.

The beginnings of these kinds of logical systems can be traced back to the
works of Beth [14, 15], Herbrand [16] and Gentzen [17]; Beth’s ideas were used
by Smullyan to formulate the tableau method for first-order predicate logic [18].
Herbrandt’s and Gentzen’s work inspired the formulation of resolution systems
presented by Robinson [19]. Methods like those based on resolution and tableaux
are strongly related to the semantics of a logic; therefore, we can often use them
to guide the construction of models; this is not possible in pure deductive meth-
ods, such as natural deduction or Hilbert systems, as formalized by Meseguer.
Our goal is to provide an abstract characterization of this class of semantics based
tools for logical systems. This is accomplished by introducing a categorical char-
acterization of the notion of satisfiability calculus which embraces logical tools
such as tableaux, resolution, Gentzen style sequents, etc. As we mentioned above,

5 Authors note: He refers to the definition of logic as a structure that is constituted
by an entailment system plus an institution, see Def. 6.



it can be thought of as a formalization of a semantic counterpart of Meseguer’s
proof calculus. We also explore the concept of mappings between satisfiability
calculi and the relation between proof calculi and satisfiability calculi.

The paper is organized as follows. In Sec. 2 we present the definitions and
results we will use throughout this paper. In Sec. 3 we present a categorical
formalization of satisfiability calculus, prove relevant results underpinning the
definitions and present examples in enough detail to illustrate the ideas. Finally
in Sec. 4 we draw some conclusions and describe further lines of research.

2 Preliminaries

From now on we assume the reader has a nodding acquaintance with basic
concepts from category theory. Basic definitions can be found in [20, 21]. Below
we present the definitions and results we will use throughout the rest of the paper
in order to define what we call satisfiability calculus. Most of these definitions
were taken from [2] in order to preserve the terminology and notations chosen
by Meseguer.

An Institution formalizes the model theory of a logic by making use of the re-
lationships existing between signatures, the relation between the sets of formulae
of two related signatures, the relation between (a) two models of the same sig-
nature and (b) the classes of models of two related signatures, and the relations
between the semantic consequence relations of two related signatures. Each of
these aspects is reflected by introducing the category of signatures and functors
going from this category to the category Set (for the case of sets of sentences)
and Cat (for the case of categories of models of a given signature).

Definition 1. [Institution]
An institution is a structure of the form 〈Sign,Sen,Mod, {|=Σ}Σ∈|Sign|〉 satis-

fying the following conditions:

– Sign is a category of signatures,
– Sen : Sign → Set is a functor. Let Σ ∈ |Sign|, then Sen(Σ) returns the set

of Σ-sentences,
– Mod : Signop → Cat is a functor. Let Σ ∈ |Sign|, then Mod(Σ) returns the

category of Σ-models,
– {|=Σ}Σ∈|Sign|, where |=Σ⊆ |Mod(Σ)| × Sen(Σ), is a family of binary rela-

tions,

and for any signature morphism σ : Σ → Σ′, Σ-sentence φ ∈ Sen(Σ) and
Σ′-model M′ ∈ |Mod(Σ)|, the following |=-invariance condition holds:

M′ |=Σ′
Sen(σ)(φ) iff Mod(σop)(M′) |=Σ φ .

Let Σ ∈ |Sign| and Γ ⊆ Sen(Σ), then we define the functor Mod(Σ,Γ ) as
the full subcategory of Mod(Σ) determined by those models M ∈ |Mod(Σ)|
such that for all γ ∈ Γ , M |=Σ γ. In addition, it is possible to define a relation



|=Σ between sets of formulae and formulae in the following way: let α ∈ Sen(Σ),
then:

Γ |=Σ α iff M |=Σ α for all M∈ |Mod(Σ,Γ )|.

An entailment system is conceived, in the same way as we did in the previous
definition, by identifying a family of deductive relations, instead of a family
of semantic consequence relations, where each of the elements in the family is
associated to a signature. It then only remains to require these relations to satisfy
the properties of reflexivity, monotonicity, transitivity, a notion of translation
between two related signatures, and to reflect the properties of soundness and
completeness of the deductive relation.

Definition 2. [Entailment system]
An entailment system is a structure of the form 〈Sign,Sen, {`Σ}Σ∈|Sign|〉 sat-

isfying the following conditions:

– Sign is a category of signatures,
– Sen : Sign → Set is a functor. Let Σ ∈ |Sign|; then Sen(Σ) returns the set

of Σ-sentences, and
– {`Σ}Σ∈|Sign|, where `Σ⊆ 2Sen(Σ) × Sen(Σ), is a family of binary relations

such that for any Σ,Σ′ ∈ |Sign|, {φ} ∪ {φi}i∈I ⊆ Sen(Σ), Γ, Γ ′ ⊆ Sen(Σ),
the following conditions are satisfied:
1. reflexivity: {φ} `Σ φ,
2. monotonicity: if Γ `Σ φ and Γ ⊆ Γ ′, then Γ ′ `Σ φ,
3. transitivity: if Γ `Σ φi for all i ∈ I and {φi}i∈I `Σ φ, then Γ `Σ φ,

and
4. `-translation: if Γ `Σ φ, then for any morphism σ : Σ → Σ′ in Sign,

Sen(σ)(Γ ) `Σ′
Sen(σ)(φ).

Definition 3. Let 〈Sign,Sen, {`Σ}Σ∈|Sign|〉 be an entailment system, then Th,
its category of theories, is a pair 〈O,A〉 such that:

– O = { 〈Σ,Γ 〉 |Σ ∈ |Sign| and Γ ⊆ Sen(Σ) }, and

– A =

{
σ : 〈Σ,Γ 〉 → 〈Σ′, Γ ′〉

∣∣∣∣∣ 〈Σ,Γ 〉, 〈Σ
′, Γ ′〉 ∈ O,

σ : Σ → Σ′ is a morphism in Sign and

for all γ ∈ Γ, Γ ′ `Σ
′
Sen(σ)(γ)

}
.

In addition, if a morphism σ : 〈Σ,Γ 〉 → 〈Σ′, Γ ′〉 satisfies Sen(σ)(Γ ) ⊆ Γ ′,
it is called axiom preserving. This defines the category Th0 by retaining only
those morphisms of Th that are axiom preserving. It is easy to see that Th0 is a
complete subcategory of Th. If we now consider the definition of Mod extended
to signatures and sets of sentences, we get a functor Mod : Thop → Cat defined
as follows: let T = 〈Σ,Γ 〉 ∈ |Th|, then Mod(T ) = Mod(Σ,Γ ).

Definition 4. Let 〈Sign,Sen, {`Σ}Σ∈|Sign|〉 be an entailment system and 〈Σ,Γ 〉 ∈
|Th0|, then we define • : Sen(Σ)→ Sen(Σ) such that Γ • =

{
γ
∣∣Γ `Σ γ

}
, and

• : Th0 → Th0 such that 〈Σ,Γ 〉• = 〈Σ,Γ •〉. Γ • is called the theory generated by
Γ .



Definition 5.
Let 〈Sign,Sen, {`Σ}Σ∈|Sign|〉 and 〈Sign′,Sen′, {`′Σ}Σ∈|Sign′|〉 be entailment sys-

tems, Φ : Th0 → Th′0 be a functor and α : Sen → Sen′ ◦ Φ a natural trans-
formation. Φ is said to be α-sensible if and only if the following conditions are
satisfied:

1. there is a functor Φ� : Sign → Sign′ such that sign′ ◦ Φ = Φ� ◦ sign, where
sign and sign′ are the functors from the corresponding category of theories
to the corresponding category of signatures, that when applied to a given
theory projects its signature, and

2. if 〈Σ,Γ 〉 ∈ |Th0| and 〈Σ′, Γ ′〉 ∈ Th′0 such that Φ(〈Σ,Γ 〉) = 〈Σ′, Γ ′〉, then
(Γ ′)• = (∅′ ∪ αΣ(Γ ))•, where ∅′ = αΣ(∅).

Φ is said to be α-simple if and only if Γ ′ = ∅′∪αΣ(Γ ) is satisfied in Condition 2,
instead of (Γ ′)• = (∅′ ∪ αΣ(Γ ))•.

It is trivial to see, based on the monotonicity of •, that α-simplicity implies α-
sensibility. An α-sensible functor has the property that its natural transformation
α only depends on signatures, which is a consequence of the following lemma.

Lemma 1. ([2, Lemma 22])

Let 〈Sign,Sen, {`Σ}Σ∈|Sign|〉 and 〈Sign′,Sen′, {`′Σ}Σ∈|Sign′|〉 be entailment sys-
tems, Φ : Th0 → Th′0 be a functor satisfying Cond. 1 of Def. 5; then any natural
transformation α : Sen → Sen′ ◦ Φ can be obtained from a natural transfor-
mation α� : Sen → Sen′ ◦ Φ� by the horizontal composition with the functor
sign : Th0 → Sign.

Now, from Definitions 1 and 2, it is possible to give a definition of logic by
relating both its model-theoretic and proof-theoretic characterization.

Definition 6. [Logic]
A logic is a structure of the form 〈Sign,Sen,Mod, {`Σ}Σ∈|Sign|, {|=Σ}Σ∈|Sign|〉

satisfying the following conditions:

– 〈Sign,Sen, {`Σ}Σ∈|Sign|〉 is an entailment system,
– 〈Sign,Sen,Mod, {|=Σ}Σ∈|Sign|〉 is an institution, and
– the following soundness condition is satisfied: for any Σ ∈ |Sign|, φ ∈

Sen(Σ), Γ ⊆ Sen(Σ),

Γ `Σ φ implies Γ |=Σ φ .

A logic is complete if, in addition, the following condition is also satisfied: for
any Σ ∈ |Sign|, φ ∈ Sen(Σ), Γ ⊆ Sen(Σ),

Γ |=Σ φ implies Γ `Σ φ .

In Def. 2 we associated deductive relations to signatures, but we said nothing
about how these relations are obtained. The next definition introduces the notion
of proof calculus. It formalizes the possibility of associating a proof-theoretic



structure to the deductive relations introduced by the definitions of entailment
systems. In [2, Ex. 11, pp. 15], Meseguer presents natural deduction as a proof
calculus for first-order predicate logic by resorting to multicategories (see [2,
Definition 10]).

Definition 7. [Proof calculus]
A proof calculus is a structure of the form 〈Sign,Sen, {`Σ}Σ∈|Sign|,P,Pr, π〉

satisfying the following conditions:

– 〈Sign,Sen, {`Σ}Σ∈|Sign|〉 is an entailment system,
– P : Th0 → StructPC is a functor. Let T ∈ |Th0|, then P(T ) ∈ |StructPC | is

the proof-theoretical structure of T ,
– Pr : StructPC → Set is a functor. Let T ∈ |Th0|, then Pr(P(T )) is the set

of proofs of T ; the composite functor Pr ◦P : Th0 → Set will be denoted by
proofs, and

– π : proofs
�→ Sen is a natural transformation such that for each T =

〈Σ,Γ 〉 ∈ |Th0| the image of πT : proofs(T ) → Sen(T ) is the set Γ •. The
map πT is called the projection from proofs to theorems for the theory T .

Finally, a logical system will be a logic plus a proof calculus for its proof
theory.

Definition 8. A logical system is a structure of the form

〈Sign,Sen,Mod, {`Σ}Σ∈|Sign|, {|=Σ}Σ∈|Sign|,P,Pr, π〉

satisfying the following conditions:

– 〈Sign,Sen,Mod, {`Σ}Σ∈|Sign|, {|=Σ}Σ∈|Sign|〉 is a logic, and
– 〈Sign,Sen, {`Σ}Σ∈|Sign|,P,Pr, π〉 is an proof calculus.

3 Satisfiability calculus

In Sec. 2, we presented the relevant definitions regarding institutions and en-
tailment systems. Additionally, we presented Meseguer’s categorical formulation
of a proof calculus as a means of providing structure for the abstract relation
of entailment defined in an entailment system. In this section, we provide a
categorical definition of a satisfiability calculus. A satisfiability calculus is the
formal characterization of a method for constructing models of a given theory,
thus providing the semantic counterpart of that proof calculus.

In the same way Meseguer proceeded in order to define a proof calculus, the
definition of a satisfiability calculus relies on the assignment to a theory of a
structure capable of expressing the construction of models of a theory.

Definition 9. [Satisfiability calculus] A satisfiability calculus is a structure
of the form 〈Sign,Sen,Mod, {|=Σ}Σ∈|Sign|,M,Mods, µ〉 satisfying the following
conditions:



– 〈Sign,Sen,Mod, {|=Σ}Σ∈|Sign|〉 is an institution,
– M : Th0 → StructSC is a functor. Let T ∈ |Th0|, then M(T ) ∈ |StructSC | is

the model structure of T ,
– Mods : StructSC → Cat is a functor. Let T ∈ |Th0|, then Mods(M(T )) is

the set of canonical models of T ; the composite functor Mods ◦M : Th0 →
Cat will be denoted by models, and

– µ : modelsop
�→ Mod is a natural transformation such that, for each T =

〈Σ,Γ 〉 ∈ |Th0|, the image of µT : modelsop(T ) →Mod(T ) is the category
of models Mod(T ). The map µT is called the projection of the category of
models of the theory T .

The intuition behind the previous definition is that, for any theory T , the
functor M assigns a model structure for T in the category StructSC

6. The functor
Mods projects those particular structures that represent sets of conditions that
can produce canonical models of a theory T = 〈Σ,Γ 〉 (i.e., the structures that
represent canonical models of Γ ). Finally, for any theory T , the functor µT
relates each of these sets of conditions to the corresponding canonical model.

Example 1. [Tableau method for first-order predicate logic]
First we will present the tableau method for first-order logic. Let IFOL =
〈Sign,Sen,Mod, {|=Σ}Σ∈|Sign|〉 be the institution of first-order predicate logic.
Let Σ ∈ |Sign| and S ⊆ Sen(Σ); then a tableau for S is a tree such that:

1. the nodes are labeled with sets of formulae (over Σ) and the root node is
labeled with S,

2. if u and v are two connected nodes in the tree (being u an ancestor of v),
then the label of v is obtained from the label of u by applying one of the
following rules:

X ∪ {A ∧B}
[∧]

X ∪ {A ∧B,A,B}
X ∪ {A ∨B}

[∨]
X ∪ {A ∨B,A} X ∪ {A ∨B,B}

X ∪ {¬¬A}
[¬1]

X ∪ {¬¬A,A}
X ∪ {A}

[¬2]
X ∪ {A,¬¬A}

X ∪ {A,¬A}
[false]

Sen(Σ)

X ∪ {¬(A ∧B)}
[DM1]

X ∪ {¬(A ∧B),¬A ∨ ¬B}
X ∪ {¬(A ∨B)}

[DM2]
X ∪ {¬(A ∨B),¬A ∧ ¬B}

X ∪ {(∀x)P (x)}
t is a ground term [∀]

X ∪ {(∀x)P (x), P (t)}

X ∪ {(∃x)P (x)}
c is a new constant [∃]

X ∪ {(∃x)P (x), P (c)}
6 Notice that the target of functor M, when applied to a theory T , is not necessarily a

model, but a structure which under certain conditions can be considered to represent
the category of models of T .



A sequence of nodes s0
τ
α0
0−−→ s1

τ
α1
1−−→ s2

τ
α2
2−−→ . . . is a branch if: a) s0 is the

root node of the tree, and b) for all i ≤ ω, si → si+1 occurs in the tree and ταii
is the rule applied, labeled with the formula αi to which it was applied.

A branch s0
τ
α0
0−−→ s1

τ
α1
1−−→ s2

τ
α2
2−−→ . . . in a tableau is saturated if there exists

i ≤ ω such that si = si+1.

A branch s0
τ
α0
0−−→ s1

τ
α1
1−−→ s2

τ
α2
2−−→ . . . in a tableau is closed if there exists

i ≤ ω and α ∈ Sen(Σ) such that {α,¬α} ⊆ si.

Let s0
τ
α0
0−−→ s1

τ
α1
1−−→ s2

τ
α2
2−−→ . . . be a branch in a tableau. Examining the

rules presented above, we can see that every si with i < ω is a set of formulae.
In each step, the application of a rule decomposes one formula of the set into
its constituent parts with respect to its major connective and preserving satisfi-
ability. Thus, the limit set of the branch is a set of formulae containing all the
constituent parts of the original set of formulae for which the tableau was built.
As a result of this, every open branch expresses, by means of a set of formulae,
the class of models satisfying it.

Now, in order to define the tableau method as a satisfiability calculus, we
must provide formal definitions for M, Mods and µ. To do this we must formally
define StructSC , the category of legal tableaux structures. For us, a tableau will
be a relation between two sets of formulae; the set of formulae for which the
models are constructed, and the set of formulae from which these models are
constructed (i.e., the union of the limit sets of all the branches). Then, given a
signature Σ ∈ |Sign| and a set of axioms Γ ⊆ Sen(Σ), we denote by StrΣ,Γ

the category of tableaux for sets of formulae over signature Σ and assuming the
set of axioms Γ . In StrΣ,Γ , objects are sets of formulae over signature Σ, and
morphisms represent tableaux for the set occurring in their source and having
as sets of formulae at the end of open branches, subsets of the set of formulae
occurring as their target. StructSC is then defined to be the category in which
objects are all possible structures StrΣ,Γ , and morphisms are the homomorphic
extension of the morphisms in ||Th0|| to the structure of the tableaux presented
above.

The functor M must be understood as the relation between a theory in
|Th0| and its category of legal structures representing tableaux, so to every
theory T , M associates the strict monoidal category [20] 〈StrΣ,Γ ,∪, ∅〉, and
for every theory morphism σ : 〈Σ,Γ 〉 → 〈Σ′, Γ ′〉, M associates a morphism
σ̂ : StrΣ,Γ → StrΣ

′,Γ ′
which is the homomorphic extension of σ to the structure

of the tableaux.
Given 〈Σ,Γ 〉 ∈ |Th0|, the functor Mods provide the means for obtaining the

category containing the closure of those structures in StrΣ,Γ that represent the
closure of the branches in saturated tableaux and, finally, the natural transfor-
mation µ relates the structures representing saturated tableaux with the model
satisfying the set of formulae denoted by the source of the morphism.

A more formal presentation, accompanied by the results supporting this ex-
ample, can be found in App. A.1.



Now we show how resolution methods can also be defined as a satisfiability
calculus.

Example 2. [Resolution method for first-order predicate logic]
Let us describe resolution for first-order logic; we describe the one introduced

in [22]. We use the notation [A0, . . . , An] to denote a list of formulae; resolution
builds a list of lists representing a disjunction of conjunctions. The rules are as
follows:

[A0, . . . ,¬¬A]
[¬¬]

[A0, . . . , A]

[A0, . . . , An,¬A]
[A′0, . . . , A

′
n, A]

[¬]
[A0, . . . , An, A

′
0, . . . , A

′
n]

[A0, . . . , A ∧A′]
[∧]

[A0, . . . , A,A
′]

[A0, . . . ,¬(A ∨A′)]
[¬∧]

[A0, . . . ,¬A,¬A′]

[A0, . . . , A ∨A′]
[∨]

[A0, . . . , A]
[A0, . . . , A

′]

[A0, . . . ,¬(A ∧A′)]
[¬∧]

[A0, . . . ,¬A]
[A0, . . . ,¬A′]

[A0, . . . , An,∀x : A(x)]
for any closed term t [∀]

[A0, . . . , An, A[x/t]

[A0, . . . , An,∃x : A(x)]
for a new constant c [∃]

[A0, . . . , An, A[x/c]]

Here we use A[x] to denote a formula with free variable x, and A[x/t] to denote
the formula resulting from replacing variable x by term t everywhere in A. For
the sake of simplicity, we assume that lists of formulae do not have repeated
elements. A resolution is a sequence of lists of formulae. If a resolution contains
an empty list (i.e., []) we say that the resolution is closed; otherwise it is an open
resolution.

For every signature Σ ∈ |Sign| and each Γ ⊂ Sen(Σ), we denote by StrΣ,Γ

the category whose objects are lists of formulae, and a morphism σ : [A0, . . . , An]→
[A′0, . . . , A

′
m] represents a sequence of application of resolution rules for [A′0, . . . , A

′
m].

Then, StructSC is a category whose objects are StrΣ,Γ , for each signature
Σ ∈ |Sign| and each set of formulae Γ ∈ Sen(Σ), and whose morphisms are of
the form σ̂ : StrΣ,Γ → StrΣ

′,Γ ′
, obtained by extending σ : 〈Σ,Γ 〉 → 〈Σ′, Γ ′〉 in

||Th0|| homomorphically.

In a similar way to Ex. 1, the functor M : Th0 → StructSC is defined as
M(〈Σ,Γ 〉) = 〈StrΣ,Γ ,∪, ∅〉.

Mods : StructSC → Set is defined as in the example above.

In App. A.1 the reader can find the formal details for Ex. 1; it is straightfor-
ward to rephrase the definitions and results for the resolution method.



A typical use for these methods is the search for counterexamples for a given
formula. To do that, we start applying rules to the negation of this formula;
once a saturated tableau is obtained, if all the branches are closed, then there
is no model of the axioms and the negation of the formula, thus the formula is
a theorem. On the other hand, if there exists an open branch, the limit set of
that branch characterizes a class of counterexamples for the formula. This is in
contrast to Hilbert systems, where we start from the axioms, and then we apply
deduction rules until we get the desired formula.

3.1 Mapping satisfiability calculi

In [5], Tarlecki discussed extensively the ways in which different institutions can
be related, and the ways in which they should be interpreted. As in previous
work, [23], we will concentrate only on institution representations because they
fit our needs better.

The following definition was taken from [5], and formalizes the notion of
institution representation.

Definition 10. [Institution representation]
Let I = 〈Sign,Sen,Mod, {|=Σ}Σ∈|Sign|〉 and I′ = 〈Sign′,Sen′,Mod′, {|=′Σ}Σ∈|Sign′|〉
be institutions. Then, 〈γSign, γSen, γMod〉 : I → I ′ is a representation map of
institutions if and only if:

– γSign : Sign→ Sign′ is a functor,

– γSen : Sen
�→ γSign ◦ Sen′, is a natural transformation (i.e., a natural

family of functions γSenΣ : Sen(Σ) → Sen′(γSign(Σ))), such that for each
Σ1, Σ2 ∈ |Sign| and σ : Σ1 → Σ2 morphism in Sign,

Sen(Σ2)

6

Sen(σ)

Sen(Σ1)

-
γSenΣ2

Sen′(γSign(Σ2))

6

Sen′(γSign(σ))

Sen′(γSign(Σ1))-
γSenΣ1

⊙
Σ2

6

σ

Σ1

– γMod : (γSign)op ◦Mod′
�→ Mod, is a natural transformation (i.e., the

family of functors γMod
Σ : Mod′((γSign)op(Σ))→Mod(Σ) is natural), such

that for each Σ1, Σ2 ∈ |Sign| and σ : Σ1 → Σ2 a morphism in Sign,

Mod′((γSign)op(Σ2))

?

Mod′((γSign)op(σop))

Mod′((γSign)op(Σ1))

-
γMod
Σ2

Mod(Σ2)

?

Mod(σop)

Mod(Σ1)-
γMod
Σ1

⊙
Σ2

6

σ

Σ1



such that for any Σ ∈ |Sign|, the function γSenΣ : Sen(Σ) → Sen′(γSign(Σ))
and the functor γMod

Σ : Mod′(γSign(Σ)) → Mod(Σ) preserves the following
satisfaction condition: for any α ∈ Sen(Σ) and M′ ∈ |Mod(γSign(Σ))|,

M′ |=γSign(Σ) γSenΣ (α) iff γMod
Σ (M′) |=Σ α .

An institution representation γ : I → I ′ expresses how the “poorer” set of
sentences (respectively, category of models) associated to I is encoded in the
“richer” one associated to I ′, and this is done by:

– constructing, for a given I-signature Σ, an I ′-signature into which Σ can be
interpreted,

– translating, for a given I-signature Σ, the set of Σ-sentences to the corre-
sponding I ′-sentences,

– obtaining, for a given I-signature Σ, the category of Σ-models from the
corresponding category of Σ′-models.

The direction of the arrows shows how the whole of I is represented by
some parts of I ′. The following two results, presented in [5], provide the relation
between I and I ′.

Proposition 1. Let I and I′ be the institutions 〈Sign,Sen,Mod, {|=Σ}Σ∈|Sign|〉
and 〈Sign′,Sen′,Mod′, {|=′Σ}Σ∈|Sign′|〉, respectively. Let ρ : I → I′ be an insti-
tution representation. Then, for all Σ ∈ |Sign|, Γ ⊆ Sen(Σ) and ϕ ∈ Sen(Σ),

if Γ |=Σ ϕ, then ρSen(Γ ) |=ρSign(Σ) ρSen(ϕ).

Definition 11. Let I and I′ be the institutions 〈Sign,Sen,Mod, {|=Σ}Σ∈|Sign|〉
and 〈Sign′,Sen′,Mod′, {|=′Σ}Σ∈|Sign′|〉, respectively. Let ρ : I → I′ be an insti-
tution representation. Then, I has the ρ-expansion property if for all 〈Σ,Γ 〉 ∈
|ThI0|, M ∈ |ModI(〈Σ,Γ 〉)|, there exists M′ ∈ |ModI′(〈ρSign(Σ), ρSen(Γ )〉)|
such that M = ρMod(M′).

Theorem 1. Let I and I′ be the institutions 〈Sign,Sen,Mod, {|=Σ}Σ∈|Sign|〉
and 〈Sign′,Sen′,Mod′, {|=′Σ}Σ∈|Sign′|〉, respectively. Let ρ : I → I′ be an insti-
tution representation. Then, for all Σ ∈ |Sign|, Γ ⊆ Sen(Σ) and ϕ ∈ Sen(Σ),
if every M ∈ Mod(〈Σ,Γ 〉) has the ρ-expansion property, then Γ |=Σ ϕ if and

only if ρSen(Γ ) |=ρSign(Σ) ρSen(ϕ).

In many cases (those in which the class of models of a signature in the source
institution is completely axiomatizable in the language of the target one), Def. 10
can easily be extended to map signatures of one institution to theories of another.
This is done so the class of models of the richer one can be restricted, by means
of the addition of axioms (thus the need for theories in the image of the functor
γSign), in order to be exactly the class of models obtained by translating to it
the class of models of the corresponding signature of the poorer one. This new
definition of institution representation guaranties that the ρ-expansion property
holds, and consequently Thm. 1 is satisfied.



In the same way, when the previously described extension is possible, we can
obtain what Meseguer calls a map of institutions by reformulating the definition
so the functor between signatures of one institution and theories of the other is
γTh : Th0 → Th′0, which has to be γSen-sensible with respect to the entailment
systems induced by the institutions I and I ′. Now, if 〈Σ,Γ 〉 ∈ |Th0|, then γTh0

can be defined as follows:

γTh0(〈Σ,Γ 〉) = 〈γSign(Σ), ∆ ∪ γSenΣ (Γ )〉 ,

where ∆ ⊆ Sen(ρSign(Σ)). Then, it is easy to prove that γTh0 is γSen-simple
because it is the γSen-extension of γTh0 to theories, thus being γSen-sensible.

The notion of a map of satisfiability calculi is the natural extension of a
map of institutions in order to consider the more material version of the satis-
fiability relation. In some sense, if a map of institutions provides a means for
representing one satisfiability relation in terms of another in a semantics pre-
serving way, the map of satisfiability calculi provides a means for representing a
model construction technique in terms of another. This is done by showing how
model construction techniques for richer logics express techniques associated
with poorer ones.

Definition 12. Let S = 〈Sign,Sen,Mod, {|=Σ}Σ∈|Sign|,M,Mods, µ〉 and S′ =

〈Sign′,Sen′,Mod′, {|=′Σ}Σ∈|Sign′|,M′,Mods′, µ′〉 be satisfiability calculi. Then,

〈ρSign, ρSen, ρMod, γ〉 : S→ S′ is a map of satisfiability calculi if and only if:

1. 〈ρSign, ρSen, ρMod〉 : I→ I′ is a map of institutions, and

2. γ : ρTh0 ◦models′
op �→modelsop is a natural transformation such that the

following equality holds:

Th0

Mod

  

modelsop

??

ρTh0

��

�
−→µ Cat = Th0

Mod

%%

ρTh0

!!

�
−→ρ

Mod Cat

�
−→γ

� −→µ′

Th′0

models′op

LL

Th′0

models′op

LL

Mod′
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Example 3. [Mapping modal logic to first-order logic]
A trivial example of a mapping between satisfiability calculi is the mapping

between the tableau method for propositional logic, and the one for first-order
logic. It is straightforward since the tableau method for first-order logic is an
extension of that of propositional logic.

Let us introduce a more interesting example; we will map the tableau method
for modal logic (as presented by Fitting [22]) to the first-order predicate logic
tableau method. The mapping between the institutions is given by the standard



translation of modal logic to first-order logic. Let us recast here the tableau
method for the system K. In [22] formulae are prefixed by labels denoting seman-
tic states. Labeled formulae are then terms of the form: ` : ϕ, where ϕ is a modal
formula and ` is a sequence of natural numbers n0, . . . , nk. The relationship R
between these labels, is then defined in the following way: `R`′ ≡ ∃n : `, n = `′.
The new rules are the following:

X ∪ {` : �ϕ}
For all `′ such that `R`′ and such that `′ appears in X [�]

X ∪ {` : �ϕ, `′ : ϕ}

X ∪ {` : ♦ϕ}
For `′ such that `R`′ [♦]

X ∪ {` : ♦ϕ, `′ : ϕ}

The rules for the propositional connectives are the usual ones obtained by label-
ing the formulae with a given label. Notice that labels denote states of a Kripke
frame; this is related in some way with the tableau method used for first-order
predicate logic. Branches, saturated branches and closed branched are defined in
the same way as in Ex. 1, but considering the relations between sets to be also

indexed by the relation used at that point. Thus, si
ταi−−→
Ri

si+1 must be under-

stood as: the set si+1 is obtained from si by applying rule τi to formula αi ∈ si
under the accessibility relation Ri.

Consider now the standard translation from modal logic to first-order logic.
Therefore, the tuple 〈ρSign, ρSen, ρMod〉 is defined as follows:

– ρSign is the function that translates modal vocabularies to first-order signa-
tures as follows: {p0, p1, . . . } 7→ 〈R, p0, p1, . . . 〉, where R is a binary relation
symbol, and each pi is an unary relation symbol.

– ρSen, is the standard translation from modal formulae to first-order formulae,
see [24] for the details.

– ρMod, is a natural transformation that, given a signature and a first-order
model of a translation of a modal language, constructs the corresponding
modal model, using the interpretation of the relation R.

The proof that this is a mapping between institutions relies on the correct-
ness of the translation [24]. Using this map we can define a mapping between
the corresponding satisfiability calculi. The natural transformation: γ : ρTh0 ◦
models′

op �→modelsop is defined as follows:

– Let us define the functors γT : ρTh0 ◦models′
op

(T )
�→modelsop(T ) for any

theory T ∈ |Th0| as a map that take each canonical model for a first-order
theory, which is a translation of a modal theory, to a canonical model of the
corresponding modal theory. The mapping is standard in the sense that the
relation R defines the canonical Kripke structure, and each unary predicate
defines the truth value of the propositions in each state.

To be a mapping between satisfiability calculi the following equality must hold
for any theory 〈Σ,Γ 〉 ∈ ||Th0||:

µ〈Σ,Γ 〉 ◦ γ〈Σ,Γ 〉 = ρMod
ρSign(Σ) ◦ µ

′
ρSign(Σ) .



This means that building a tableau using the first-order rules for the translation
of a modal theory, then obtaining the corresponding canonical model in modal
logic using γ, and therefore obtaining the class of models by using µ, is exactly
the same as obtaining the first-order models by µ′ and then the corresponding
modal models by using ρMod. Roughly speaking, this implies that the transla-
tion of saturated tableaus is coherent with respect to the mapping of institutions.

A more formal presentation, accompanied by the results supporting this ex-
ample, can be found in App. A.2.

4 Conclusions and Further work

Meseguer [2] introduced the notion of proof calculus, which in some sense im-
plements the deduction relation of an entailment system. In this paper we made
an attempt to complete the picture by providing the notion of Satisfiability Cal-
culus, which might be thought of as the semantical counterpart of the notion
of proof calculus, and provides the formal foundations for those proof systems
that use model construction techniques to prove or disprove a given formula,
thus implementing the satisfiability relation of an institution. These techniques
constitute an important stream of research in logic; in particular, these methods
play an important role in automatic software validation and verification.

Methods like resolution and tableaux are strongly related to the semantics
of a logic; and, therefore, we can often use them to construct models; this is
not possible in pure deductive methods, such as natural deduction or Hilbert
systems, as formalized by Meseguer. Our goal was to provide an abstract char-
acterization of this class of semantics based tools for logical systems. This was
accomplished by introducing a categorical characterization of the notion of a
satisfiability calculus, which embraces logical tools such as tableaux and resolu-
tion, Gentzen style sequents, etc. As we mentioned above, it can be thought of
as a formalization of a semantic counterpart of Meseguer’s proof calculus.

Given a logical system for which, following our new definition that includes
the notion of a satisfiability calculus, we can provide both a proof calculus and a
satisfiability calculus implementing the entailment relation and the satisfaction
relation, respectively. There clearly exist connections between them that can
be explored; this is especially true when the underlying structure used in both
definitions is the same (for example, the case for the tableau method for first-
order predicate logic, see Ex. 1).

If we examine the definitions of proof calculus and satisfiability calculus, it
is easy to see that the restrictions over the natural family of functors π〈Σ,Γ 〉 :
proofs(〈Σ,Γ 〉)→ Sen(〈Σ,Γ 〉) and µ〈Σ,Γ 〉 : modelsop(〈Σ,Γ 〉)→Mod(〈Σ,Γ 〉)
to yield Γ • and Mod(〈Σ,Γ 〉), respectively, maybe too restrictive. Partial im-
plementations of both the entailment relation and the satisfiability relation are
gaining visibility in the software engineering community. Examples on the syn-
tactic side are the implementation of less expressive calculi, either for the sake of
simplicity, as in the case of the finitary definition of the reflexive and transitive



closure in the Kleene algebras with tests [25], the case of the implementation of
rewriting tools like Maude [26] as a partial implementation of equational logic,
etc. Examples on the semantic side are the many bounded model checkers for un-
decidable languages that are being implemented, such as Alloy [27] for relational
logic, the growing family of SMT-solvers [28], etc. Removing this “restriction”
implies allowing these partial implementations, in so far as they comply with
behaving as a natural family of methods, which in this case implies that the
monotonicity of deduction (respectively satisfaction) under change of notation.
Additionally, mappings between partial proof calculi (respectively, satisfiability
calculi) can provide an ordering for how good a method is as an approximation
of the ideal entailment relation (respectively, satisfaction relation).

We also explored the concept of mappings between satisfiability calculi and
the relation between proof calculi and satisfiability calculi.

Finally, extending the definition of satisfiability calculus to a structure capa-
ble of managing the concept of validity does not present any difficulty.
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A Formal definitions and proofs

In this section we will present detailed explanations, definitions and proofs of
the results supporting the examples we presented in Sec. 3.

A.1 Tableau method for first-order predicate logic

In Ex. 1 we presented the tableau method for first-order predicate logic and the
intuitions for how it fits in to the definition of a satisfiability calculus. In this
section we will provide the formal definitions and the results proving it.

From now on we will work with IFOL = 〈Sign,Sen,Mod, {|=Σ}Σ∈|Sign|〉, the
institution of first-order predicate logic.

Definition 13. Let Σ ∈ |Sign| and Γ ⊆ Sen(Σ), then we define StrΣ,Γ =
〈O,A〉 such that O = 2Sen(Σ) and A = {α : {Ai}i∈I → {Bj}j∈J | α = {αj}j∈J }
where for all j ∈ J , αj is a branch in a tableau for Γ ∪ {Bj} with leaves
∆ ⊆ {Ai}i∈I . It should be noted that ∆ |=Σ Γ ∪ {Bj}.

Lemma 2. Let Σ ∈ |Sign| and Γ ⊆ Sen(Σ); then 〈StrΣ,Γ ,∪, ∅〉, where ∪ :
StrΣ,Γ × StrΣ,Γ → StrΣ,Γ is the typical bi-functor on sets and functions, and
∅ is the neutral element for ∪, is a strict monoidal category.

Definition 14. StructSC is defined as 〈O,A〉 where O = {StrΣ,Γ | Σ ∈ |Sign|∧
Γ ⊆ Sen(Σ)}, and A = {σ̂ : StrΣ,Γ → StrΣ

′,Γ ′ | σ : 〈Σ,Γ 〉 → 〈Σ′, Γ ′〉 ∈
||Th0||}, the homomorphic extension of the morphisms in ||Th0||.

Lemma 3. StructSC is a category.

Proof. Morphisms σ̂ ∈ A are the homomorphic extension of the morphisms
σ ∈ ||Th0|| to the structure of the tableaux, translating sets of formulae and pre-
serving the application of the rules. Following this, the composition of σ̂1, σ̂2 ∈ A,
the homomorphic extensions σ1, σ2 ∈ ||Th0||, not only exists, but it is the ho-
momorphic extension of the morphism σ1 ◦σ2 ∈ ||Th0||. The associativity of the
composition is also trivial to prove by considering that the morphisms are ho-
momorphic extensions and by the associativity of the composition of morphisms
in Th0. The identity morphism is the homomorphic extension of the identity
morphism for the corresponding signature.



Definition 15. M : Th0 → StructSC is defined as M(〈Σ,Γ 〉) = 〈StrΣ,Γ ,∪, ∅〉
and M(σ : 〈Σ,Γ 〉 → 〈Σ′, Γ ′〉) = σ̂ : 〈StrΣ,Γ ,∪, ∅〉 → 〈StrΣ′,Γ ′

,∪, ∅〉, the homo-
morphic extension of σ to the structures in 〈StrΣ,Γ ,∪, ∅〉.

Lemma 4. M is a functor.

Proof. Let id〈Σ,Γ 〉 : 〈Σ,Γ 〉 → 〈Σ,Γ 〉 ∈ ||Th0|| be the identity morphism for
〈Σ,Γ 〉 ∈ |Th0|. M(id〈Σ,Γ 〉) = id〈StrΣ,Γ ,∪,∅〉 because, by Def. 14, it is the homo-

morphic extension of id〈Σ,Γ 〉 to the structures in StrΣ,Γ .

Let σ1 : 〈Σ1, Γ1〉 → 〈Σ2, Γ2〉, σ2 : 〈Σ2, Γ2〉 → 〈Σ3, Γ3〉 ∈ ||Th0||; now, as
composition of homomorphisms is a homomorphism, then M(σ1 ◦ σ2) is the
composition M(σ1) ◦M(σ2).

Definition 16. Let Σ ∈ |Sign|, ∆ ⊆ Sen(Σ), and consider {Fi}i<ω an enumer-
ation of Sen(Σ) such that for every formula α, its sub-formuli are enumerated
before α. Then Cn(∆) is defined as follows:

– Cn(∆) =
⋃
i<ω Cn

i(∆)

– Cn0(∆) = ∆, Cni+1(∆) =

{
Cni(∆) ∪ {Fi} , if Cni(∆) ∪ {Fi} is consistent.
Cni(∆) ∪ {¬Fi} , otherwise.

Definition 17. Mods : StructSC → Cat is defined as Mods(〈StrΣ,Γ ,∪, ∅〉) =

{〈Cn(∆̃), Σ〉 | (∃α : ∆ → ∅ ∈ |StrΣ,Γ |)(∆̃ → ∅ ∈ α ∧ (∀α′ : ∆′ → ∆ ∈
||StrΣ,Γ ||)(∆′ = ∆))} and for all σ : Σ → Σ′ ∈ |Sign| (and σ̂ : 〈StrΣ,Γ ,∪, ∅〉 →
〈StrΣ′,Γ ′

,∪, ∅〉 ∈ ||StructSC ||), the following holds: Mods(σ̂)(〈Cn(∆̃), Σ〉) =

〈Cn(Sen(σ)(Cn(∆̃))), Σ′〉.

Lemma 5. Mods is a functor.

Proof. As for each theory 〈StrΣ,Γ ,∪, ∅〉 ∈ |StructSC |, Mods(〈StrΣ,Γ ,∪, ∅〉) is
a discrete category containing the canonical models for 〈Σ,Γ 〉, the only prop-
erty that must be proved is that for all σ̂ : 〈StrΣ,Γ ,∪, ∅〉 → 〈StrΣ′,Γ ′

,∪, ∅〉 ∈
||StructSC ||, o ∈ |Mods(〈StrΣ,Γ ,∪, ∅〉)|, Mods(σ̂)(o) ∈ |Mods(〈StrΣ′,Γ ′

,∪, ∅〉)|.
Let o = 〈Cn(∆̃), Σ〉, then, by definition, Mods(σ̂)(o) = 〈Cn(Sen(σ)(Cn(∆̃)), Σ′〉.
Observe that, as a consequence of the fact that σ̂ is the homomorphic extension
of Sen(σ) to the structure of tableaux, the canonical model obtained by applying
Mods(σ̂) to a particular element of Mods(〈StrΣ,Γ ,∪, ∅〉) is a canonical model
obtained from a branch of a tableau in 〈StrΣ′,Γ ′

,∪, ∅〉.

Definition 18. Let 〈Σ,Γ 〉 ∈ |Th0|, then we define µΣ : modelsop(〈Σ,Γ 〉) →
ModFOL(〈Σ,Γ 〉) as µΣ(〈∆,Σ〉) = Mod(〈Σ,∆〉).

Fact 1 Let Σ ∈ |SignFOL| and Γ ⊆ SenFOL(Σ), then µ〈Σ,Γ 〉 is a functor.

Lemma 6. µ is a natural family of functors.



Proof. Let 〈Σ,Γ 〉, 〈Σ′, Γ ′〉 ∈ |Th0| and σ : 〈Σ,Γ 〉 → 〈Σ′, Γ ′〉 ∈ |Th0|. Then, the
naturality condition for µ can be expressed in the following way:

〈∆′, Σ′〉

µΣ′

��

modelsop(σ) // 〈∆,Σ〉

µΣ

��
Mod(〈∆′, Σ′〉)

Mod(σ) //Mod(〈∆,Σ〉)

It is trivial to check that this condition holds by observing that canonical models
are closed theories, thus behaving as theory presentations in Th0.

Now, from Lemmas 4, 5, and 6, and considering the hypothesis that IFOL is
an institution, the following corollary follows.

Corollary 1. 〈SignFOL,SenFOL,ModFOL, {|=Σ
FOL}Σ∈|SignFOL|,M,Mods, µ〉 is

a satisfiability calculus.

A.2 Mapping modal logic to first-order logic

In Ex. 3 we presented the intuitions behind the mapping from the tableau method
for modal logic to the tableau method for first-order predicate logic. In this
section we will provide the formal definitions and the results proving its existence.

Assume 〈SignFOL,SenFOL,MFOL,ModsFOL, {|=Σ
FOL}Σ∈|SignFOL|, µFOL〉 is

the satisfiability calculus for first-order predicate logic, denoted by SCFOL, and
〈SignK ,SenK ,MK ,ModsK , {|=Σ

K}Σ∈|SignK |,µK 〉 is the satisfiability calculus for
modal logic, denoted by SCK .

Definition 19. ρSign : SignK → SignFOL is defined as ρSign(〈{pi}i∈I〉) =
〈R, {pi}i∈I〉 by mapping each propositional variable pi, for all i ∈ I, to a
first-order predicate logic predicate pi, and adding a binary predicate R, and
ρSign(σ : 〈{pi}i∈I〉 → 〈{p′i′}i′∈I′〉) = σ′ : 〈R, {pi}i∈I〉 → 〈R′, {p′i′}i′∈I′〉 map-
ping R to R′, and pi to p′i for all i ∈ I.

Lemma 7. ρSign is a functor.

Proof. To show that ρSign is a functor we have to prove that it preserves identity
and composition. Consider a signature Σ = 〈{pi}i∈I〉; the identity is just the
mapping {pi 7→ pi}i∈I . By Def. 19 we obtain that ρΣ({pi 7→ pi}i∈I) = {R 7→
R} ∪ {pi 7→ pi}i∈I〉, thus yielding the identity for signature 〈R, {pi}i∈I〉.

Let Σ,Σ′, Σ′′ ∈ |Sign| and assume there are two morphisms σ : Σ → Σ′, σ′ :
Σ′ → Σ′′ ∈ ||Th0||. Then ρSign(σ ◦ σ′) = ρSign({pi 7→ p′′i }), and therefore
ρSign(σ ◦σ′) = {R 7→ R′′}∪{pi 7→ p′′i }. By definition of composition of functions
{R 7→ R′′} ∪ {pi 7→ p′′i } = {R 7→ R′} ∪ {pi 7→ p′i} ◦ {R′ 7→ R′′} ∪ {p′i 7→ p′′i }, and
consequently {R 7→ R′′} ∪ {pi 7→ p′′i } = ρSign(σ) ◦ ρSign(σ′).

Fact 2 ρTh0 , the extension of ρSign defined as in Sec. 3.1, is ρSen-sensible.



Definition 20. Let 〈{pi}i∈I〉 ∈ |SignK |, then ρSen〈{pi}i∈I〉 : SenK(〈{pi}i∈I〉) →
ρSign◦SenFOL(〈{pi}i∈I〉) is defined recursively as ρSen〈{pi}i∈I〉(α) = T〈{pi}i∈I〉,x(α)
where:

T〈{pi}i∈I〉,x(pi) = p′i(x) , for all i ∈ I.

T〈{pi}i∈I〉,x(¬α) = ¬T〈{pi}i∈I〉,x(α)

T〈{pi}i∈I〉,x(α ∨ β) = T〈{pi}i∈I〉,x(α) ∨ T〈{pi}i∈I〉,x(β)

T〈{pi}i∈I〉,x(♦α) = (∃y)(R(x, y) ∧ T〈{pi}i∈I〉,y(α))

Fact 3 Let 〈{pi}i∈I〉 ∈ |SignK |, ρSen〈{pi}i∈I〉 is a function.

Lemma 8. ρSen is a natural family of functions.

Proof. To prove this lemma we must prove that the equality SenK(σ) ◦ ρSenΣ′ =

ρSenΣ ◦SenFOL(ρSign(σ)) holds for every formula α ∈ |ThK0 |. Notice that SenK(σ)
and SenFOL(ρSign(σ)) only translate extra-logical symbols preserving the log-
ical structure of the formulae because they are homomorphic extensions of the
morphisms to the structure of the formulae induced by SenK and SenFOL. On
the other hand, the reader can see that two formulae that are α-convertible yield,
after the application of ρSenΣ and ρSenΣ′ , α-convertible formulae in the target cat-
egory of sentences such that, by Def. 19, preserving the mapping of extra-logical
symbols.

Definition 21. Let 〈{pi}i∈I〉 ∈ |SignK |, then we define ρMod
〈{pi}i∈I〉 : ρSign ◦

ModFOL(〈{pi}i∈I〉)→ModK(〈{pi}i∈I〉) as follows:

– for all M = 〈S,R, {pi}i∈I〉 ∈ |ModFOL(〈R, {pi}i∈I〉)|, ρMod
〈{pi}i∈I〉(M) =

〈S,R, `〉, with `(pi) = {s ∈ S|pi(s)}.7
– let 〈{pi}i∈I〉 ∈ |SignK |, then for all homomorphism h : 〈S1, R1, {p1i}i∈I〉 →
〈S2, R2, {p2i}i∈I〉 ∈ ||ModFOL(〈R, {pi}i∈I〉)||, then we define ρMod

〈{pi}i∈I〉(h)

to be ĥ, where ĥ(s1) = s2 if and only if h(s1) = s2 for all s1 ∈ S1.

Lemma 9. Let 〈{pi}i∈I〉 ∈ |SignK |, then ρMod
〈{pi}i∈I〉 is a functor.

Proof. It is trivial to prove that ρMod
〈{pi}i∈I〉 preserves identities by noting the

definition of ĥ in terms of h.
The preservation of compositions follows by observing that, as predicates

are mapped positionally, if we consider a pair of homomorphisms h1, h2 ∈
||ModFOL(〈R, {pi}i∈I〉)||, the resulting homomorphism ρMod

〈{pi}i∈I〉(h1 ◦ h2) ∈
||ModK(〈{pi}i∈I〉)|| is exactly the homomorphism ρMod

〈{pi}i∈I〉(h1)◦ρMod
〈{pi}i∈I〉(h2) ∈

||ModK(〈{pi}i∈I〉)||.

Lemma 10. ρMod is a natural family of functors (i.e., a natural transforma-
tion).

7 Notice that 〈R, {pi}i∈I〉 = ρSign(〈{pi}i∈I〉) where 〈{pi}i∈I〉 ∈ |SignK |.



Proof. Predicate symbols are mapped by resorting to the injective function
σ : 〈{pi}i∈I〉 → 〈{p′i}i∈I′〉 ∈ ||SignK || and, as ρMod

〈{pi}i∈I〉 and ρMod
〈{p′i}i∈I′ 〉 maps

predicates interpreting the symbols in the ρSign-translation of the signature po-
sitionally, the reduct operations ModK(σ) and ModFOL(ρSign(σ)) commute
with ρMod

〈{pi}i∈I〉 and ρMod
〈{p′i}i∈I′ 〉, thus proving the naturality condition.

The next corollary follows from Lemmas 7, 8, and 10.

Corollary 2. 〈ρSign, ρSen, ρMod〉 is a map of institutions.

Now, we have to prove that structures representing the tableaux for first-
order predicate logic for properties resulting from the translation of modal logic
properties can indeed be translated to modal logic tableaux for the original
modal logic properties.

Fact 4 Let 〈{pi}i∈I〉 ∈ |SignK |; for all α ∈ |SenK(〈{pi}i∈I〉)|, if ρSen〈{pi}i∈I〉(α) =

β, then any quantified sub-formuli in β is either of the form: a) (∀x)(R(y, x) =⇒
ϕ(x)), or b) (∃x)(R(y, x) ∧ ϕ(x)).

Then last fact above shows that whenever we are dealing with a set of formu-
lae coming from the application of function ρSen〈{pi}i∈I〉, the resulting first-order
predicate logic tableaux will have a very particular shape because the applica-
tion of rule [∀] (respectively [∃]) is restricted to the formulae coming from the
translation.

The next definition provides the means for obtaining modal logic tableaux
from first-order predicate logic tableaux. In order to simplify the following def-
inition, we will restrict ourselves to those first-order predicate logic tableaux
in which, when the rule [∀] (respectively [∃]) is applied, the rules [∨] and [¬]
(respectively [∧]) are applied. Notice that this assumption does not limit the
definitions and results in any way because any other legal tableau for the same
set of formulae that does not satisfy this property can be reordered to satisfy it.

Definition 22. We define T , a function translating first-order logic tableaux to
modal logic tableaux, as follows8:

–
X ∪ {(∃x)(R(y, x) ∧ P (x))}

x is a new constant [∃]
X ∪ {(∃x)(R(y, x) ∧ P (x)), R(y, x) ∧ P (x)}

[∧]
X ∪ {(∃x)(R(y, x) ∧ P (x)), R(y, x) ∧ P (x), R(y, x), P (x)}

↓ T
X ∪ {` : ♦P}

x is a new label such that R(y, x) [♦]
X ∪ {` : ♦P, x : P}

–

X ∪ {(∀x)(¬R(y, x) ∨ P (x))}
x is a ground term [∀]

X ∪ {(∀x)(¬R(y, x) ∨ P (x)),¬R(y, x) ∨ P (x)}
[∨]

X ∪ {(∀x)(¬R(y, x) ∨ P (x)),
¬R(y, x) ∨ P (x),
¬R(y, x)}

∣∣∣∣∣∣
X ∪ {(∀x)(¬R(y, x) ∨ P (x)),
¬R(y, x) ∨ P (x),
P (x)}

↓ T
8 Notice that translation rules for the rules for the propositional operators take care

of the labeling by just preserving them.



X ∪ {` : �P}
x is a label ocurring in X ∪ {`} such that R(`, x) [�]

X ∪ {` : �P, x : P}

Definition 23.
Let 〈〈{pi}i∈I〉, Γ 〉 ∈ |ThK0 |, then γ〈{pi}i∈I〉 : ρTh0◦modelsopFOL(〈〈{pi}i∈I〉, Γ 〉)→
modelsopK (〈〈{pi}i∈I〉, Γ 〉) is defined as γ〈{pi}i∈I〉(〈∆, 〈R, {pi}i∈I〉〉) = 〈{α ∈
|SenK(〈{pi}i∈I〉)| | ρSen〈{pi}i∈I〉(α) ∈ ∆}, 〈{pi}i∈I〉〉.

Lemma 11. Let 〈{pi}i∈I〉 ∈ |SignK |, then γ〈{pi}i∈I〉 is a functor.

Proof. This lemma follows trivially by observing that the categories obtained by
applying modelsFOL and modelsK are discrete, and that given 〈∆, 〈R, {pi}i∈I〉〉,
〈{α ∈ |SenK(〈{pi}i∈I〉)| | ρSen〈{pi}i∈I〉(α) ∈ ∆}, 〈{pi}i∈I〉〉 is the canonical model
obtained from a branch of the modal logic tableau resulting from the application
of T to the tableau from which 〈∆, 〈R, {pi}i∈I〉〉 was obtained.

Lemma 12. γ : ρTh0 ◦modelsopFOL →modelsopK is a natural family of functors
(i.e. a natural transformation).

Proof. Let σ : 〈{pi}i∈I〉 → 〈{p′i}i∈I′〉 ∈ ||SignK || and ϕ : 〈R, {pi}i∈I〉 →
〈R′, {p′i}i∈I′〉 ∈ ||SignFOL|| such that ρSign(σ) = ϕ then, the naturality con-
dition for γ can be drawn as follows:

ρTh0 ◦modelsopFOL(〈{p′i}i∈I′〉)

ρTh0◦models
op
FOL

(σop)

��

γ〈{p′
i
}
i∈I′ 〉 // modelsopK(〈{p′i}i∈I′〉)

models
op
K

(σop)

��
ρTh0 ◦modelsopFOL(〈{pi}i∈I〉)

γ〈{pi}i∈I〉 // modelsopK(〈{pi}i∈I〉)

Let 〈∆, 〈R′, {p′i}i∈I′〉〉 ∈ |ρTh0◦modelsopFOL(〈{p′i}i∈I′〉)|, then, by Def. 23, we get
that γ〈{p′i}i∈I′ 〉(〈∆, 〈R′, {p′i}i∈I′〉〉) = 〈{α ∈ |SenK(〈{p′i}i∈I′〉)| | ρSen〈{p′i}i∈I′ 〉(α) ∈
∆}, 〈R′, {p′i}i∈I′〉〉 holds. Thus,

modelsopK(σop)(〈{α ∈ SenK(〈{p′i}i∈I′〉) | ρSen〈{p′i}i∈I′ 〉(α) ∈ ∆}, 〈R′, {p′i}i∈I′〉〉)
= 〈{β ∈ SenK(〈{pi}i∈I〉) | SenK(σ)(β) ∈

{α ∈ SenK(〈{p′i}i∈I′〉) | ρSen〈{p′i}i∈I′ 〉(α) ∈ ∆}}, 〈{pi}i∈I〉〉
= 〈{β ∈ SenK(〈{pi}i∈I〉) | ρSen〈{p′i}i∈I′ 〉(SenK(σ)(β)) ∈ ∆}, 〈{pi}i∈I〉〉

On the other hand,

ρTh0 ◦modelsopFOL(σop)(〈∆, 〈R′, {p′i}i∈I′〉〉)
= modelsopFOL(ρTh0(σ)op)(〈∆, 〈R′, {p′i}i∈I′〉〉)
= modelsopFOL(ϕop)(〈∆, 〈R′, {p′i}i∈I′〉〉)
= 〈{α ∈ SenFOL(〈R, {pi}i∈I〉) | Sen(ϕ)(α) ∈ ∆}, 〈R, {pi}i∈I〉〉

Then,

γ〈{pi}i∈I〉(〈{α ∈ SenFOL(〈R, {pi}i∈I〉) | Sen(ϕ)(α) ∈ ∆}, 〈R, {pi}i∈I〉〉)
= 〈{β ∈ SenK(〈{pi}i∈I〉) | ρSen〈{pi}i∈I〉(β) ∈

{α ∈ SenFOL(〈R, {pi}i∈I〉) | SenFOL(ϕ)(α) ∈ ∆}}, 〈R, {pi}i∈I〉〉
= 〈{β ∈ SenK(〈{pi}i∈I〉) | SenFOL(ϕ)(ρSen〈{pi}i∈I〉(β)) ∈ ∆}, 〈R, {pi}i∈I〉〉



The only property that remains to be proved is that ρSen〈{p′i}i∈I′ 〉(SenK(σ)(β)) =

SenFOL(ρSign(σ))(ρSen〈{pi}i∈I〉(β)). This property follows trivially by definition of

ρSign, ρSen and, both SenK and SenFOL.

Finally, the following lemma prove the equivalence of the two cells shown in
Def. 12.

Lemma 13. Let 〈{pi}i∈I〉 ∈ |SignK |, then

µK 〈{pi}i∈I〉 ◦ γ〈{pi}i∈I〉 = ρMod
ρSign(〈{pi}i∈I〉) ◦ µFOLρSign(〈{pi}i∈I〉) .

Proof. To prove this property we must prove that µK 〈{pi}i∈I〉 ◦ γ〈{pi}i∈I〉 and

ρMod
ρSign(〈{pi}i∈I〉) ◦ µFOLρSign(〈{pi}i∈I〉), are the same functors.

Let 〈{pi}i∈I〉 ∈ |SignK |, and Γ ⊆ Sen(〈{pi}i∈I〉). Let 〈∆, 〈R, {pi}i∈I〉〉 ∈
|modelsopFOL(ρTh0(〈〈{pi}i∈I Γ 〉))|; then, γ〈{pi}i∈I〉(〈∆, 〈R, {pi}i∈I〉〉) = 〈{α ∈
SenK(〈{pi}i∈I〉) | ρSen〈{pi}i∈I〉(α) ∈ ∆}, 〈{pi}i∈I〉〉.

Thus, we obtain that µK 〈{pi}i∈I〉 ◦ γ〈{pi}i∈I〉(〈∆, 〈R, {pi}i∈I〉〉) if the class of

models ModK(〈〈{pi}i∈I〉, {α ∈ SenK(〈{pi}i∈I〉) | ρSen〈{pi}i∈I〉(α) ∈ ∆}〉).
Now, as µFOLρSign(〈{pi}i∈I〉)(〈∆, 〈R, {pi}i∈I〉〉) = ModFOL(〈〈R, {pi}i∈I〉, ∆〉),

it only remains to be proved that ρMod
〈{pi}i∈I〉(ModFOL(〈〈R, {pi}i∈I〉, ∆〉)) =

ModK(〈〈{pi}i∈I〉, {α ∈ SenK(〈{pi}i∈I〉) | ρSen〈{pi}i∈I〉(α) ∈ ∆}〉).
It is easy to see that this equality holds because, on the one hand, we have

the modal logic reducts of the first-order predicate logic models of the formulas
in ∆ and, on the other hand, we have the modal logic models of the reverse
translation of the formulae in ∆. Notice that by the way in which tableaux are
related through T , the formulae in ∆ can be reverse translated.

The next corollary follows from Coro. 2, and Lemmas 12 and 13.

Corollary 3. 〈ρSign, ρSen, ρMod, γ〉 is a map of satisfiability calculi.


