

1

Joint Specification and Testing of Safety
and Security Requirements

Sadegh Sadeghipour1, Holger Schlingloff2, Mirko Conrad3, Harald Schülzke3

1 ITPower Solutions GmbH, Berlin, Germany

2 ZeSys e.V. and Fraunhofer FOKUS, Berlin, Germany

3 samoconsult GmbH, Berlin, Germany

Abstract

Violation of safety or security in modern highly networked and automated devices and functions, such as
those used for the Internet of Things, Industry 4.0, and autonomous driving, can lead to catastrophic
consequences for people and the environment. Therefore, the development process of embedded
systems and software is associated with demanding requirements regarding safety and security.

While the discipline of safety engineering is well established and supported by international standards
like IEC 61508, ISO 26262, and EN 5012x, security engineering and its interaction with the safety process
in the field of embedded systems is still in early phases of its development.

In this paper we present a methodology for the joint specification of safety and security requirements of
embedded systems, and the derivation of test cases. Currently, safety and security are treated in two
separate engineering processes. The advantage of a process for specification both safety and security at
the same time is that possible redundancies and inconsistencies between safety and security
requirements can be identified at an early stage.

The core of the methodology presented here is a domain-specific language (DSL) called LESS (Language
for Embedded Safety and Security), which is based on natural language templates often used in
requirements engineering. With the aid of a few simple rules and a small set of keywords users can define
safety and security requirements in a formalized way without any need for a difficult-to-understand
mathematical or a complex graphical notation.

We also present a set of methods that form the basis for implementing semi-automatic procedures for
analyzing and refining requirements as well as deriving test cases from them. These methods are based
on an analysis of the syntactical structure of the safety and security requirements expressed in LESS, and
on the design of controlled conversations with the user. The results of the conversations are used to
achieve further semantic information needed for the analysis, refinement and derivation activities
mentioned above. Some of the developed methods have been implemented as prototypes and applied
to case studies from automotive and medical technology.

Due to the easy-to-learn and well-understandable domain-specific language LESS, as well as the controlled
wizard-like conversations with the user, the methodology presented here possesses a high potential to
be used in all industrial sectors where safety- and security-related applications are developed.

Keywords: Safety and Security Co-Engineering, Language for Embedded Safety and Security (LESS)

* The described activities were conducted as part of the EmbeddedSafeSec project (Mar. 2021 – Dec. 2022). The
EmbeddedSafeSec project was funded by the Investitionsbank Berlin (IBB) program for the promotion of research, innovation
and technology – ProFIT – and by the European Regional Development Fund (ERDF).

2

Contents

1 Introduction ... 2

2 Related Work ... 3

3 The domain-specific language LESS ... 4

3.1 LESS Template ... 5

3.2 E-Gas Case Study ... 5

4 Specification and testing methods based on LESS .. 8

4.1 Detailing and Refining Safety and Security Requirements .. 8

4.2 Checking Consistency and Completeness of Safety and Security Requirements 9

4.3 Test case generation ... 10

5 Tool support .. 12

6 Summary.. 12

7 Bibliography ... 13

1 Introduction

Current industrial trends such as Internet of Things, Industry 4.0, and autonomous driving, introduce

new levels of automation and networking. In this context the violation of safety (i.e., the protection

of the environment from the danger posed by a system) or security (i.e., the protection of the system

from attacks by the environment) may lead to catastrophic consequences. Since embedded systems

are the heart and brain of the systems mentioned above, safety and security engineering of

embedded systems is a topic with outstanding significance for the respective development process.

The discipline of safety engineering is well researched and methodologically established in most

industrial sectors that develop and use embedded systems, supported by internationally recognized

standards such as IEC 61508 (Functional safety of electrical/electronic/programmable electronic

safety-related systems), ISO 26262 (Road vehicles – Functional safety) [1], and EN 50128 (Railway

applications - Communication, signaling and processing systems – Software for railway control and

protection systems). The same can be said for information security management of general IT

systems and applications, supported by corresponding international standards such as the ISO 27000

series on information security. Domain specific cybersecurity standards are also emerging, such as

ISO/SAE 21434 (Road vehicles - Cybersecurity engineering) [2].

However, in the context of highly networked embedded devices and applications, the interplay

between security and safety and their joint engineering and assurance are still questions lacking

industrially applicable and satisfying solutions.

The electronic systems built into the devices must be able to communicate with different software

versions of various network nodes, possibly unknown at the time of development. This partly

requires the adaptation and reloading of the software during runtime. Furthermore, a typical

embedded system is exposed to multiple variations of the physical and digital environment

(pressure, temperature, friction, communication buses, digital inputs and outputs, etc.). All these

characteristics hide potential hazards for safety and threats for security. The interaction between

safety and security also adds to the complexity of the situation: Indeed, a breach of data security can

3

lead to a hazard for functional safety, e.g., intrusion of an unauthorized person into a Car2X network

and manipulation of the communication between the vehicles in the network. A striking example of

such an intrusion was published in [3], which brought the topic of the interplay between safety and

security to public attention.

Furthermore, compliance with safety and security can lead to conflicting requirements for the system

to be developed. For example, the encryption of system input data may be a necessary requirement

from the security point of view. However, due to the execution time required for decrypting data,

this may conflict with a possible safety requirement, according to which the input data must be

processed in very short cycles. On the other hand, the fulfillment of safety and security in certain

areas can place similar or same requirements on the system to be developed, e.g., a plausibility

check of the input values of a component. These examples show that a separate engineering of

safety and security can lead to late discovery of conflicts as well as duplication of activities, which in

turn can lead to unnecessary effort and costs, and also to possibly high development risks.

In this paper we address a part of the challenge mentioned above. We present a methodology for the

joint specification of safety and security requirements of embedded systems, and subsequent quality

assurance methods. At the core of our methodology is a domain-specific language (DSL) called LESS

(Language for Embedded Safety and Security), which allows the specification, refinement and

analysis of safety and security requirements as well as the generation of test cases from them.

The work presented in this paper has been accomplished as part of the EmbeddedSafeSec project [4]

concerned with various aspects of safety & security co-engineering for embedded systems. In

addition to the methodology presented here, a process model for safety and security co-engineering

of embedded systems was developed within the project and presented at SAEC Days in June 2022

[5].

2 Related Work

A large part of the research concerning the joint safety and security engineering deals with joint

hazard and threat analysis methods. These extend either 1) an existing hazard analysis method of the

safety process to a threat analysis method for the security process, or 2) combine the existing

methods of both disciplines, or 3) propose an alternative method that is substantially different from

the existing methods. To the first group belong for example the Security Aware Hazard Analysis and

Risk Assessment [6], abbreviated to SAHARA, and the Failure Mode, Vulnerabilities and Effect

Analysis Method [7], abbreviated to FMVEA. They extend the well-known safety analysis methods

HARA and FMEA by including system threat information according to Microsoft's STRIDE model [8],

[9] (STRIDE = Spoofing, Tampering, Repudiation, Information disclosure, Denial of service, and

Elevation of privilege). The second group includes methods like Failure-Attack-CounTermeasure

(FACT) [10] and Extended Fault Tree (EFT) [11]. They are based on a combination of fault trees from

safety engineering and attack trees from security engineering. The methods of the third group

propose a combined analysis of safety and security in the concept phase of system development

using model-based and/or system-theoretical approaches [12], [13], [14]. While conventional hazard

and threat analysis focuses on a component or a system, the starting point of the analysis here is the

interaction between the system components and involved systems including their environment. In

[15], Pereira et al. present a method for specifying safety and security requirements by constraints

and identifying conflicts as well as similarities between them. While the analysis provided by this

method focuses on conflict identification, our approach also delivers solutions for refining

requirements and generating test cases from them.

4

A main result of the hazard and threat analyses are safety and security goals as well as an initial set

of functional safety and security requirements to be fulfilled by the system under development.

Therefore, a process of joint safety and security engineering may start with one of the analysis

methods mentioned above and continue to specify the safety and security goals and requirements

using the methodology presented in this paper.

The objective of our methodology is a systematic and tool-supported specification, refinement and

analysis of requirements as well as test generation. This objective is also shared by the research fields

formal specifications or formal methods and controlled natural languages. While they aim at a

general description method for any kind of requirements, the focus of the methodology presented in

this paper is restricted to safety and security requirements.

The field of formal methods (see e.g. [16]), existing almost from the beginning of computer science,

deals with the description of system and software requirements often based on first order predicate

logic (e.g., B-Method [17]), higher order predicate logic (e.g., Z [18]), or temporal logics (e.g., [19]).

However, due to their complexity and their distance to the experience of software engineers they

could not be established in industrial practice.

In contrast to formal methods the field of controlled natural languages does not aim at a

mathematical formalization of requirements, but at a kind of standardized expression as near as

possible to the natural language and the wording of requirements used by system and software

engineers [20]. As a consequence, templates introduced by different controlled natural languages

have vastly been adopted for the specification of requirements in different industrial sectors.

We share the objective of being near to the industrial practice with the field of controlled natural

languages. Therefore, we designed our domain-specific language LESS (Language for Embedded

Safety and Security requirements) as a controlled natural language for the specification of safety and

security requirements. At the same time LESS uses some logical operators from predicate logic in

order to precisely express the logical conditions used in many safety and security requirements. An

approach for functional requirements which is similar to LESS, called MARS, is presented in [21].

3 The Domain-Specific Language LESS

The objective of the domain-specific language LESS is to define safety and security requirements with

the aid of a few simple rules and a small set of keywords in a formalized way, without any need for a

difficult-to-understand mathematical or a complex graphical notation.

At a high level LESS is based on a template which resembles the general grammatical structure of a

sentence in natural language. Only sentences following this template are valid LESS sentences or

terms. This is also the basic concept of controlled natural languages. One of the first works

concerning requirements in this field is the one created by Chris Rupp [22]. The template presented

in her book is a simple and general, and at the same time very useful, structure which can be used for

any kind of software requirement in any industrial field (see Figure 1).

Figure 1 Rupp-Template [21]

5

Most templates developed and presented later are based on the Rupp template. They often

represent a more detailed structure and allow to express different kinds of functional and technical

requirements. For designing the LESS template, we considered the Rupp template as well as some

more detailed ones developed by different authors, especially the template presented in [23].

3.1 LESS Template

Since the developed domain-specific language serves to express a specific kind of requirements,

namely the safety and security ones, the LESS template does not possess a high expressiveness for

other types of requirements. For example, due to the strictness of safety and security requirements,

LESS allows only SHALL as modal verb, neglecting SHOULD and WILL, as proposed by Rupp.

Therefore, a class of requirements, often denoted as “nice to have” features, cannot be expressed in

LESS. At the same time, in order to achieve the precision required in the field of safety and security

engineering, a formal syntax for logical and arithmetical terms is defined and embedded into the

LESS language. As a consequence, the whole language was descripted in EBNF (extended Backus-

Naur form).

Figure 2 shows the LESS template with its 13 positions. The bold font limited in angular brackets at

the upper part of each position rectangle shows the non-terminal elements of the syntax. The words

written using Capital letters in each rectangle denote the keywords which can be used in the

corresponding position. All positions except for position 5 and 6 are optional.

3.2 E-Gas Case Study

A LESS specification document containing the safety and security requirements of a project consists

of two parts. In the first part the vocabulary used in the requirements is defined, e. g., notions for

process verbs, components, states, variables, object attributes, etc. The second part of a

specification document contains the individual requirements, each of them described by a LESS term.

It may be augmented by additional information such as the requirement identifier, the identifier of

the parent requirement, the requirement classification, and its integrity/criticality.

The ‘Standardized E-Gas Monitoring Concept for Gasoline and Diesel Engine Control Units’ (E-Gas

concept) [24] has been used as one case study to evaluate the applicability of LESS and the LESS

methodology. The E-Gas concept contains a variety of functional and safety requirements for engine

control units at different levels of abstraction. As part of the evaluation, a set of safety-related

requirements from the E-Gas concept have been converted into terms compliant with the LESS

Template (see Fehler! Verweisquelle konnte nicht gefunden werden.).

6

Figure 2 The LESS template

Example 1 (E-Gas)

EGAS_e-105

[SReq-01*] ‘Sensors shall be plausibility checked’ (Component: Drive pedal)

In a first step the requirement was manually converted into a LESS compliant term in a way that

preserves its meaning as much as possible. As the LESS template calls for mentioning the subject

explicitly in position 5, [SReq-01*] was reworded into ‘The Drive_Pedal SHALL check the sensor_

signals of the Drive_Pedal for plausibility’. The mapping to the elements of the LESS DSL is shown

below:

ID … 5 6 7 … 10 11 …

[SReq-01] The
Drive_Pedal

SHALL check the
sensor_signals
of the
Drive_Pedal

for plausibility.

Example 2 (E-Gas)

EGAS_e-110

[SReq-06*] ‘A safety concept shall be implemented in the engine control unit which detects and

confirms undesired states of a high driving torque or an unintended acceleration. In case of a fault the

engine control unit shall switch to a safe state.’ (Component: Engine control unit)

7

As the above requirement is not atomic (singular), it does not possess the corresponding

characteristic required for safety requirements in ISO 26262-8:2018, clause 6.4.2.4.c [1]. As a

consequence, it was first divided into 5 atomic sub-requirements which were converted into LESS

compliant terms as follows:

ID 1 … 5 6 7 … 10 11 …

[SReq-
06a.1]

 The
Engine_Control_Unit

SHALL detect undesired
states

of
High_Driving_Torque.

[SReq-
06a.2]

 The
Engine_Control_Unit

SHALL confirm undesired
states

of
High_Driving_Torque.

[SReq-
06a.3]

 The
Engine_Control_Unit

SHALL detect an
Unintended_
Aacceleration.

[SReq-
06a.4]

 The
Engine_Control_Unit

SHALL confirm an
Unintended_
Aacceleration.

[SReq-
06b]

In
case
of a
fault

 The
Engine_Control_Unit

SHALL switch to a safe state.

Of course, in the case no guideline for writing requirements is used, not all arbitrary safety or security

requirements can be converted into a LESS compliant terms with a reasonable effort. In this case the

grammar of the used language should allow the user to integrate such requirements into the same

specification document in order to avoid the problems associated with multi-sourcing of the

requirement specification. For that the LESS grammar offers the quotation mark symbol. As example

we consider the following E-Gas requirement.

Example 3 (E-Gas)

EGAS_e-107

[SReq-04*] ‘Torques affecting requirements of other ECUs shall be protected in a signal compound of

the engine control unit.’ (Component: Engine control unit).

We consider the slightly reworded form of this requirement, where the subject is mentioned
explicitly:
‘The engine control shall protect torques affecting requirements of other ECUs in a signal compound.’

The phrase ‘torques affecting requirements of other ECUs in a signal compound’ cannot be expressed
in the LESS template. Therefore, as shown below, this phrase is set into quotation marks and is not
interpreted by the analysis tool.

ID … 5 6 7 String

[SReq-04] The
Engine_Control_Unit

SHALL protect “torques affecting requirements of others ECUs in a signal
compound”

Example 4 (VAD)

We also show in the following an example from the second case study, which concerns the

development of a ventricular assist device (VAD) as a medical technology application. The example

describes a security requirement and contains some positions of the LESS template which were not

used in the former examples.

Req_BH40 ‘The clinical user interface shall be able to switch from manual to auto mode, if and only if

the user is logged in.’

8

In order to be fully compatible to LESS template the requirement was slightly rephrased and

formulated as a LESS term as follows:

ID … 5 6 7 8 9 … 12

[Req_BH40] THE clinical_UI SHALL BE ABLE
TO switch

FROM
manual_mode

TO
auto_mode

 IF AND ONLY IF
THE user IN
logged_in

4 Specification and Testing Methods Based on LESS

The methods for semi-automatic procedures to analyze and refine safety and security requirements

as well as deriving test cases from them are based on the following steps:

1. Analysis of the syntactical structure of the safety and security requirements expressed in a

LESS specification document.

2. Designing controlled conversations with the user in order to achieve further semantic

information needed for the analysis, refinement and derivation activities mentioned above.

3. Processing of the user's response and generating the result, which can be a consistency or

completeness verdict, a refined requirement, or a test case.

In the following we describe for each of the following subjects one exemplary method:

• Detailing and refinement of safety and security requirements

• Consistency and completeness analysis of safety and security requirements

• Deriving test cases from safety and security requirements

4.1 Detailing and Refining Safety and Security Requirements

According to the terminology used in the fields of requirements engineering and safety engineering

we consider the refinement relationship between different levels of safety or security requirements

as shown in Figure 3.

Figure 3 Refinement relationship between different levels of safety/security requirements

Our approach on refinement is based on an interactive process, where the machine supports the

human by asking relevant questions. This way, we can use ample techniques for analyzing and

transforming requirements without the need of formal tool qualification; the responsibility at any

moment rests with the safety/security engineers.

9

Example 5 (E-Gas)

One of the rules for the interaction wizard is the following: “In case of a vaguely formulated

condition, ask for a more detailed condition” Here is a sample dialogue using this rule:

[SReq-06b] ‘In case of a fault the Engine_Control_Unit SHALL switch

to a safe state.’
(Functional Safety Requirement, ASIL B)

[SReq-06b] refers to the case of a ‘fault’.
Would you like to further define a ‘fault’? [Yes/No/Later]

> Y
> ‘fault’ := ‘Unintended_Acceleration’

[SReq-06b.1] ‘In case of Unintended_Acceleration the

Engine_Control_Unit SHALL switch to a safe state.’
(Functional Safety Requirement, ASIL B)

As a result, the refined requirement [SReq-06b.1] was added to the requirements section of the LESS

specification document. It was linked to its parent requirement [SReq-06b] and inherits the integrity

level (ASIL) from its parent requirement.

Example 6 (E-Gas)

As another example, here is a dialogue exemplifying the rule “In case a requirement mentions a safe

state, ask for detailed definition of the safe state”:

[SReq-06b.1] ‘In case of Unintended_Acceleration the

Engine_Control_Unit SHALL switch to a safe state.’

(Functional Safety Requirement, ASIL B)

[SReq-06b.1] refers to a safe state. Would you like to detail the
safe state mentioned in [SReq-06b.1]? [Yes/No/Later]

> Y

> [SS-01] := Injection driver of the gasoline engine is switched off

(Safe State)

Would you like to review / update the original requirement [SReq-

06b.1] as well? [Yes/No/Later]

> Y

> [SReq-06b.1.1] ‘In case of Unintended_Acceleration the

Engine_Control_Unit SHALL switch into Safe State [SS-01].’

(Functional Safety Requirement, ASIL B)

As a result, the newly defined safe state [SS-01] and its definition were added to the LESS

specification document. Also, the updated requirement [SReq-06b.1.1] was added.

4.2 Checking Consistency and Completeness of Safety and Security
Requirements

For checking consistency and completeness of the requirements, we use a similar approach: We do

not aim at a mathematically proven correct set of requirements, but we do support the engineer in

10

the formulation of an unambiguous and comprehensive specification. An example is the

identification of missing steps in a chain of actions.

Example 7 (E-Gas)

[SReq-06a.2] ‘The Engine_Control_Unit SHALL confirm undesired states

of High_Driving_Torque.
(Functional Safety Requirement, ASIL B)

Here, we find a requirement with the verb 'confirm'. Hence, the wizard asks the user:

[SReq-06a.2] refers to the confirmation of 'undesired states of
High_Driving_Torque'.

Would you like to specify a subsequent action? [Yes/No/Later]

> Y

> [SReq-06a.2.1] In case of confirmed undesired states of High_
Driving_Torque the Engine_Control_Unit SHALL switch into a safe

state.
(Functional Safety Requirement, ASIL B)

As a result, the new requirement [SReq-06a.2.1] was added to the specification document.

In a similar way, we ask the user if multiple requirements concern the same state.

4.3 Test Case Generation

One of the main supports our methodology provides is the semi-automatic generation of test cases.

As example, if a requirement mentions actions which are to be performed in certain states, the user

is asked how to reach that state and how to confirm that the intended action has been performed.

Here is a sample dialogue:

Example 8 (E-Gas)

(1) [SReq-06b.1.1] ‘In case of Unintended_Acceleration the

Engine_Control_Unit SHALL switch into Safe State [SS-01].’

(Functional Safety Requirement, ASIL B)
(2) [SS-01] ‘Injection driver of the gasoline engine is switched

off’

(Safe State)

Enter Requirement ID

> SReq-06b.1.1

Is 'IN CASE OF Unintended_Acceleration’ a precondition or does it

constrain the test input?

> Test Input

Describe all the ways how 'IN CASE OF Unintended_Acceleration’ can be

fulfilled?

> 1. Set Current_Vehicle_Acceleration > Target_Vehicle_Acceleration

Are there any other preconditions for the testcase?

> Y

11

Please enter the other preconditions below, separated by comma:

> System is running

 Here is the generated testcase:

Test ID Precondition Test Input Expected Behaviour

TC_001
(SReq-
06b.1.1)

System is
running

1. Set
Current_Vehicle_Acceleration >
Target_Vehicle_Acceleration

1. Engine_Control_Unit SHALL switch to Safe
State [SS-01].

Figure 4 User interaction and test case generation workflow of the LESS tool

12

5 Tool Support

Within the EmbeddedSafeSec project we developed some prototypical tool support for LESS. Starting

from the Xtext Java framework [25] as an Eclipse Plugin, we specified the LESS grammar using EBNF

and fully-automatically generated an editor for it. This editor had features like syntax highlighting,

auto-completion and error checking. Proceeding towards the processing of LESS terms and

implementation of the code to access the LESS syntax tree, we faced the problem of poor

documentation of Xtext and hardly understandable error messages. Therefore, we switched to the

textX Python framework [26] to re-implement a simple editor for LESS, including all of the features

mentioned above. Moreover, in textX we were able to realize some of the refining, checking and

generation methods described in section 4, as well as the corresponding user interactions. As an

example, Figure 4 shows the stepwise user interactions and the generation of a test case realized by

the LESS tool prototype for Example 8 from the section 4.3.

6 Summary

In this paper, an easy-to-learn and -understand domain-specific language, called LESS, for

specification of safety and security requirements of embedded software was presented. Moreover,

in order to support the user by refining and analyzing requirements as well as generating test cases

from them, a methodology was introduced, which is based on wizard-like conversations with the

user, controlled by LESS syntax.

Within the EmbeddedSafeSec project, the LESS methodology was applied to two industrial projects

from automotive and medical technology, respectively. According to this experience the authors are

convinced that LESS possesses a high potential to be deployed in safety and security engineering

within the embedded software industry. At the same time, one should be aware of the limitation of

the LESS methodology. Firstly, it is only applicable to safety and security requirements, and not to

general functional or technical requirements, which may contain certain kinds of expressions not

covered by the LESS template. Secondly, the processing of the requirements formulated in LESS does

not contain any semantic aspect. As a consequence, the procedures used are not fully automatic and

rely highly on user interactions to achieve semantic information. Otherwise, complex

mathematical/logical derivation procedures would be needed, which in turn require a complex

notation and experienced users.

LESS contains also a notion for state diagrams and the corresponding methods for refinement,

analysis of requirements as well as test case generation. The description of this feature would be

beyond the scope of this paper.

Of course, for an industrial deployment of LESS it would be necessary to adopt and adjust the LESS

template to different application fields. Last but not least, the present prototypical tool support

should be developed further in order to gain more user acceptance.

Acknowledgements: The authors would like to thank Katherina Babenkova, Daniel Yermakov, Erik

Haarländer, Erik Dölling and Gheorghe Celac for their valuable contributions regarding the design of

the LESS DSL and the implementation of the supporting tools.

13

7 Bibliography

[1] Road vehicles - Functional safety, ISO 26262, 2018.

[2] Road vehicles — Cybersecurity engineering, ISO/SAE 21434, 2021.

[3] S. Curtis, "Hacker remotely crashes Jeep from 10 miles away," The Telegraph, 21. July 2015.

[4] "EmbeddedSafeSec project," 2022. [Online]. Available: https://embeddedsafesec.zesys.de/en/.

[Accessed 30 12 2022].

[5] M. Conrad, S. Sadeghipour and H. Schlingloff, "EmbeddedSafeSec – Safety und Security Co-

Engineering für eingebettete Systeme," in SAEC Days 2022, Munich, 2022.

[6] G. Macher, A. Höller, H. Sporer, E. Armengaud and C. Kreiner, "A Combined Safety-Hazards and

Security-Threat Analysis Method for Automotive Systems," in Proceedings of 18th Design,

Automation Test in Europe Conference - DATE, 2015.

[7] C. Schmittner, P. P. Puschner, T. Gruber and E. Schoitsch, "Security Application of Failure Mode

and Effect Analysis (FMEA)," in Proceedings of Computer Safety, Reliability, and Security,

SAFECOMP 2014, 2014.

[8] Microsoft Corporation, "The Stride Threat Model," 2009. [Online]. Available:

https://docs.microsoft.com/en-us/previous-versions/commerce-

server/ee823878(v=cs.20)?redirectedfrom=MSDN. [Accessed 27. January 2023].

[9] S. Hernan, S. Lambert, T. Ostwald and A. Shostack, "Uncover Security Design Flaws Using The

STRIDE Approach," MSDN Magazine, 2006.

[10] G. Sabaliauskaite and A. Mathur, "Aligning Cyber-Physical System Safety and Security," in

Proceedings of Complex Systems Design, Planning & Management, 2014.

[11] I. N. Fovino and M. Masera, "Integrating Cyber Attacks within Fault Trees," Reliability

Engineering & System Safety, vol. 94, no. 9, 2009.

[12] R. Oates, D. Foulkes, G. Herries and D. Banham, "Practical Extensions of Safety Critical

Engineering Processes for Securing Industrial Control Systems," in Proceedings of 8th IET

International System Safety Conference incorporating the Cyber Security Conference, 2013.

[13] W. Young and N. G. Leveson, "An Integrated Approach to Safety and Security Based on Systems

Theory," Communications of the ACM, vol. 57, no. 2, 2014.

[14] I. Friedberg, K. McLaughlin, P. Smith, D. Laverty and S. Sezer, "STPA-SafeSec: Safety and Security

Analysis for Cyber-Physical Systems," Journal of Information Security and Applications, vol. 34,

no. 2, 2017.

14

[15] D. Pereira, C. Hirata, R. Pagliares and S. Nadjm-Tehrani, "Towards Combined Safety and Security

Constraints Analysis," in Computer Safety, Reliability, and Security: Proceedings of SAFECOMP

2017 Workshops, ASSURE, DECSoS, SASSUR, TELERISE, and TIPS, 2017.

[16] M. Roggenbach, A. Cerone, H. Schlingloff, G. Schneider und S. Shaikh, Formal Methods for

Software Engineering: Languages, Methods, Application Domains. Springer, 2022.

[17] J. R. Abrial, The B Book – Assigning Programs to Meanings, Cambridge University Press, 2005.

[18] J. Spivey, The Z Notation. A Reference Manual, 2 ed., New York: Prentice Hall, 1992.

[19] L. Lamport, Specifying Systems: The TLA+ Language and Tools for Hardware and Software

Engineers, Addison-Wesley Professional., 2002.

[20] T. Kuhn, "A Survey and Classification of Controlled Natural Language," Computational

Linguistics, vol. 40, pp. 121-170, 03 2014.

[21] K. Teschner and S. Baronick, "Formal Requirements – Least heeded when most needed?"

Model Engineering Solutions, 2022. [Online]. Available: https://model-

engineers.com/en/academy/webinars/archive/formal-requirements-least-heeded-when-most-

needed-2/. [Accessed 16 01 2023].

[22] C. Rupp, Requirements-Engineering und -Management, Munich: Hanser, 2002.

[23] P. Vallejo, R. Mazo, C. Jaramillo and J. Medina, "Towards a New Template for the Specification

of Requirements in Semi-Structured Natural Language," Journal of Software Engineering

Research and Development, vol. 8, 2 2020.

[24] EGAS Working Group, "Standardized E-Gas Monitoring Concept for Gasoline and Diesel Engine

Control Units," V6.0, 2015.

[25] Eclipse Foundation, "Xtext – Language Engineering for everyone!," [Online]. Available:

https://www.eclipse.org/Xtext/. [Accessed 16 01 2023].

[26] I. R. Dejanović, "textX – Domain-Specific Languages and parsers in Python made easy," [Online].

[Accessed 16 01 2023].

