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Abstract

Event structures are fundamental models in concurrency theory, providing a
representation of events in computation and of their relations, notably concur-
rency, conflict and causality. In this paper we present a theory of minimisation
for event structures. Working in a class of event structures that generalises many
stable event structure models in the literature (e.g., prime, asymmetric, flow and
bundle event structures), we study a notion of behaviour-preserving quotient,
referred to as a folding, taking (hereditary) history-preserving bisimilarity as
a reference behavioural equivalence. We show that for any event structure a
folding producing a uniquely determined minimal quotient always exists. We
observe that each event structure can be seen as the folding of a prime event
structure, and that all foldings between general event structures arise from fold-
ings of (suitably defined) corresponding prime event structures. This gives a
special relevance to foldings in the class of prime event structures, which are
studied in detail. We identify folding conditions for prime and asymmetric event
structures, and show that also prime event structures always admit a unique
minimal quotient (while this is not the case for various other event structure
models).

Keywords: Event structures, minimisation, history-preserving bisimilarity,
behaviour preserving quotient

1. Introduction

When dealing with formal models of computational systems, a classical prob-
lem is that of minimisation, i.e., for a given system, define and possibly construct
a compact version of the system which, very roughly speaking, exhibits the same
behaviour as the original one, avoiding unnecessary duplications. The minimi-
sation procedure depends on the notion of behaviour of interest and also on
the expressive power of the formalism at hand, which determines its capability
of describing succinctly some behaviour. One of the most classical examples is
that of finite state automata, where one is typically interested in the accepted
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language. Given a deterministic finite state automaton, a uniquely determined
minimal automaton accepting the same language can be constructed, e.g., as
a quotient of the original automaton via a partition/refinement algorithm (see,
e.g., [1]). Moving to non-deterministic finite automata, minimal automata be-
come smaller, at the price of a computationally more expensive minimisation
procedure and non-uniqueness of the minimal automaton [2].

In this paper we study the problem of minimisation for event structures,
a fundamental model in concurrency theory [3, 4, 5]. Event structures are a
natural semantic model when one is interested in modelling the dynamics of a
system by providing an explicit representation of the events in computations
(occurrences of atomic actions) and of the relations between events, like causal
dependencies, choices, possibility of parallel execution, i.e., in what is referred
to as a true concurrent (non-interleaving) semantics. Prime event structures [3],
probably the most widely used event structure model, capture dependencies be-
tween events in terms of causality and conflict. A number of variations of prime
event structures have been introduced in the literature. In this paper we will
deal with asymmetric event structures [6], which generalise prime event struc-
tures with an asymmetric form of conflict which allows one to model concurrent
readings and precedences between actions, and flow [7, 8] and bundle [9] event
structures, which add the possibility of directly modelling disjunctive causes.
Event structures have been used for defining a concurrent semantics of several
formalisms, like Petri nets [3], graph rewriting systems [10, 11, 12] and process
calculi (see, e.g., [13, 7, 14, 15, 16, 17, 18]). Recent applications are in the field
of weak memory models [19, 20, 21] and of process mining and differencing [22].

Behavioural equivalences, defined in a true concurrent setting, take into ac-
count not only the possibility of performing steps, but also the way in which
such steps relate with each other. We will focus on hereditary history-preserving
(hhp-)bisimilarity [23], the finest equivalence in the true concurrent spectrum
in [24], which, via the concept of open map, has been shown to arise as a canon-
ical behavioural equivalence when considering partially ordered computations
as observations [25].

The motivation for the present paper originally stems from some work on
the analysis and comparison of business process models. The idea, advocated
in [22, 26], is to use event structures as a foundation for representing, analysing
and comparing process models. The processes, in their graphical presentation,
should be understandable, as much as possible, by a human user, who should
be able, e.g., to interpret the differences between two processes diagnosed by a
comparison tool. For this aim it can be important to avoid “redundancies” in
the representation and thus to reduce the number of events, but clearly with-
out altering the behaviour. The paper [27] explores the use of asymmetric and
flow event structures and, for such models, it introduces some ad hoc reduction
techniques that allow one to merge sets of events without changing the true con-
current behaviour. A general notion of behaviour preserving quotient, referred
to as a folding, is introduced over an abstract class of event structures, having
asymmetric and flow event structures as subclasses. However, no general theory
is developed. The paper focuses on a special class of foldings, the so-called ele-
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mentary foldings, which can only merge a single set of events into one event, and
these are studied separately on each specific subclass of event structures (asym-
metric and flow event structures), providing only sufficient conditions ensuring
that a function is a folding.

A general theory of behaviour preserving quotients for event structures is
thus called for, settling some natural foundational questions. Is the notion of
folding adequate, i.e., are all behaviour preserving quotients expressible in terms
of foldings? Is there a minimal quotient in some suitably defined general class
of event structures? What happens in specific subclasses? (For asymmetric
and flow event structures the answer is known to be negative, but for prime
event structures the question is open.) Working in the specific subclasses of
event structures, can we have a characterisation of general foldings, providing
not only sufficient but also necessary conditions?

In this paper we start addressing the above questions. We work in a general
class of event structures based on the idea of family of posets in [28], sufficiently
expressive to generalise most stable event structures models in the literature,
including prime [3], asymmetric [6], flow [7] and bundle [9] event structures.

As a first step we study, in this general setting, the notion of folding, i.e., of
behaviour preserving quotient. A folding is a surjective function that identifies
some events while keeping the behaviour unchanged. Formally, it establishes a
hhp-bisimilarity between the source and target event structure. Foldings can be
characterised as open maps in the sense of [25]. Actually, it turns out that not
all behaviour preserving quotients arise as a folding, but we show that for any
behaviour preserving quotient, there is a folding that induces a coarser equiva-
lence, in a way that foldings properly capture all possible behaviour preserving
quotients. Additionally, given two possible foldings of an event structure we
show that it is always possible to “join” them. This allows us to prove that for
each event structure a maximally folded version, namely a uniquely determined
minimal quotient always exists.

Relying on the order-theoretic properties of the set of configurations of event
structures [28], and on the correspondence between prime event structures and
domains [3], we derive that each event structure in the considered class arises as
the folding of a canonical prime event structure. Moreover, all foldings between
general event structures arise from foldings of the corresponding canonical prime
event structures. Interestingly, this result can be derived from the characterisa-
tion of folding morphisms as open maps.

The results above give a special relevance to foldings in the class of prime
event structures, which thus are studied in detail. We provide necessary and
sufficient conditions characterising foldings for prime event structures. This
characterisation of foldings can guide, at least in the case of finite structures,
the construction of behaviour preserving quotients. Moreover we show that also
prime event structures always admit a minimal quotient.

Relying on the characterisation of foldings we can also establish a clear
connection with the so-called abstraction homomorphisms, introduced in [29]
for similar purposes in a more restricted context.

The fact that all event structures arise as foldings of prime event structures
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allows one to think of various brands of event structures in the literature, like
asymmetric, flow and bundle event structures, as more expressive models that
allow for smaller realisations of a given behaviour, i.e., of smaller quotients.
For all these classes, however, the uniqueness of the minimal quotient is lost.
Despite the fact that foldings on wider classes of event structures can be stud-
ied on the corresponding canonical prime event structures, a direct approach
can be theoretically interesting and it can lead to more efficient minimisation
procedures. In this paper, a characterisation of foldings is explicitly devised for
asymmetric event structures.

Most results have a natural categorical interpretation. In order to keep the
presentation simple, the categorical references are inserted in side remarks (and
sometimes used in proofs) that can be safely skipped by the non-interested
reader. This applies, in particular, to the possibility of viewing foldings as open
maps in the sense of [25], which is discussed in an appendix. This correspondence
suggests the possibility of understanding and generalising our results to a more
abstract categorical setting.

The rest of the paper is structured as follows. In Section 2 we introduce
the class of event structures we work with, i.e., poset event structures, and our
reference behavioural equivalence, namely hereditary history-preserving bisim-
ilarity. We also discuss how various event structure models in the literature
embed into the considered class. In Section 3 we introduce and study the no-
tion of folding, we prove the existence of a minimal quotient and we show the
tight relation between general foldings and those on prime event structures. In
Section 4 we present folding criteria on prime and asymmetric event structures,
and discuss the existence of minimal quotients. Finally, in Section 5 we draw
some conclusions, discuss connections with related literature and outline future
work venues. An appendix discusses in detail the possibility of viewing foldings
as open maps, the relation with abstraction homomorphisms and provides some
results of technical nature.

This is an extended version of the conference paper [30]. Here we provide
full proofs of the results, we slightly simplify the characterisation of foldings for
PESs, we give a characterisation of foldings for asymmetric event structures and
we treat in detail the relation with abstraction homomorphisms and the view
of foldings as open maps.

2. Event Structures and History-Preserving Bisimilarity

In this section we define hereditary history-preserving bisimilarity, the refer-
ence behavioural equivalence in the paper. This is done for an abstract notion
of event structure, introduced in [28], of which various stable event structure
models in the literature can be seen as special subclasses. We will explicitly
discuss prime [3], asymmetric [6], flow [7, 8] and bundle [9] event structures.

Notation. We first fix some basic notation on sets, relations and functions.
Let R ⊆ X ×X be a binary relation. Given Y,Z ⊆ X, we write Y R∀ Z (resp.
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Y R∃ Z) if for all (resp. for some) y ∈ Y and z ∈ Z it holds that y R z.
When Y or Z are singletons, sometimes we replace them by their only element,
writing, e.g., y R∃ Z for {y} R∃ Z. The relation R is acyclic on Y if there is
no {y0, y1, . . . , yn} ⊆ Y such that y0 R y1 R . . . R yn R y0. Relation R is a
partial order if it is reflexive, antisymmetric and transitive. Given a function
f : X → Y we will denote by f [x 7→ y] : X∪{x} → Y ∪{y} the function defined
by f [x 7→ y](x) = y and f [x 7→ y](z) = f(z) for z ∈ X \ {x}. Note that this
notation represents an update of f , when x ∈ X, or an extension of its domain,
otherwise. For Z ⊆ X, we denote by f|Z : Z → Y the restriction of f to Z.

2.1. Poset Event Structures

Following [28, 31, 32, 27], we work on a class of event structures where
configurations are given as a primitive notion. More precisely, we borrow the
idea of family of posets from [28].

Definition 2.1 (family of posets). A poset is a pair (C,≤C) where C is a set and
≤C is a partial order on C. A poset will be often denoted simply as C, leaving
the partial order relation ≤C implicit. Given two posets C1 and C2 we say that
C1 is a prefix of C2 and write C1 ⊑ C2 if C1 ⊆ C2 and ≤C1=≤C2 ∩(C2 × C1).
A family of posets F is a prefix-closed set of finite posets i.e., a set of finite
posets such that if C2 ∈ F and C1 ⊑ C2 then C1 ∈ F . We say that two posets
C1, C2 ∈ F are compatible, written C1 ⌢ C2, if they have an upper bound, i.e.,
there is C ∈ F such that C1, C2 ⊑ C. The family of posets F is called coherent
if each subset of F whose elements are pairwise compatible has an upper bound.

Posets C will be used to represent configurations, i.e., sets of events executed
in a computation of an event structure. The order ≤C intuitively represents the
order in which the events in C can occur. This motivates the notion of prefix
order that can be interpreted as a computational extension: in order to have
C1 ⊑ C2 we require not only that C1 ⊆ C2, but also that

1. events in C1 are ordered exactly as in C2, i.e., the order in C1 is the
restriction of the order in C2;

2. the new events in C2 \C1 cannot precede events already in C1 (i.e., for all
x1 ∈ C1, x2 ∈ C2, if x2 ≤C2

x1 then x2 ∈ C1).

While ≤C1=≤C2 ∩(C1 × C1) would be the right formalisation of (1) alone, re-
quiring the stronger ≤C1

=≤C2
∩(C2 × C1) captures also (2).

An example of family of posets can be found in Fig. 1 (left). Observe, for
instance, that the configuration with set of events {c} is not a prefix of the one
with set of events {a, c}, since in the latter a ≤ c.

An event structure is then defined simply as a coherent family of posets
where events carry a label. Hereafter Λ denotes a fixed set of labels.

Definition 2.2 (event structure). A (poset) event structure is a tuple E =
⟨E,Conf (E), λ⟩ where E is a set of events, Conf (E) is a coherent family of
posets such that E =

⋃
Conf (E) and λ : E → Λ is a labelling function. For a

configuration C ∈ Conf (E) the order ≤C is referred to as the local order.
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Figure 1: An event structure E and the canonical pes P(E)

In [27] abstract event structures are defined as a collection of ordered con-
figurations, without any further constraint. This is sufficient for giving some
general definitions which are then studied in specific subclasses of event struc-
tures. Here, in order to develop a theory of foldings at the level of general
event structures, we need to assume stronger properties, i.e, those of a fam-
ily of posets from [28] (e.g, the fact that Definition 3.5 is well-given relies on
this). This motivates the name poset event structure. Also note that, differ-
ently from what happens in other general concurrency models, like configuration
structures [32], configurations are endowed explicitly with a partial order, which
in turn intervenes in the definition of the prefix order between configurations.
This will be essential to view event structures featuring asymmetric conflicts,
like asymmetric event structures, as subclasses (see also Section 2.3).

Since we only deal with poset event structures and their subclasses, we will
often omit the qualification “poset” and refer to them just as event structures.
Moreover, we will often identify an event structure E with the underlying set E
of events and write, e.g., x ∈ E for x ∈ E.

An isomorphism of configurations f : C → C ′ is an isomorphism of posets
that respects the labels, i.e., for all x, y ∈ C, we have λ(x) = λ(f(x)) and x ≤C y
iff f(x) ≤C′ f(y). When configurations C,C ′ are isomorphic we write C ≃ C ′.

As mentioned above, the prefix order on configurations can be interpreted as
computational extension. This will be later formalised by a notion of transition
system over the set of configurations (see Definition 2.4).

Given an event x in a configuration C it will be useful to refer to the prefix
of C including only those events that necessarily precede x in C (and x itself).
This motivates the following definition.

Definition 2.3 (history). Let E be an event structure, let C ∈ Conf (E) and
let x ∈ C. The history of x in C is defined as the set C[x] = {y ∈ C | y ≤C x}
endowed with the restriction of ≤C to C[x], i.e., ≤C[x]=≤C ∩(C[x]×C[x]). The
set of histories in E is Hist(E) = {C[x] | C ∈ Conf (E) ∧ x ∈ C}. The set of
histories of a specific event x ∈ E will be denoted by Hist(x).

Some properties of histories will be useful in the sequel.

Lemma 2.1 (properties of histories). Let E be an event structure. Then

1. for all C ∈ Conf (E), we have C[x] ⊑ C, hence C[x] ∈ Conf (E);
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2. for all C1, C2 ∈ Conf (E), C1 ⊑ C2 iff for all x ∈ C1, C1[x] = C2[x];

3. for all H1, H2 ∈ Hist(x), if H1 ⌢ H2 then H1 = H2;

Proof. 1. Immediate by the definition of C[x].

2. Let C1, C2 ∈ Conf (E) such that C1 ⊑ C2. For all x ∈ C1 we have that

C2[x] = {y ∈ C2 | y ≤C2
x}

= {y ∈ C1 | y ≤C1
x} [since C1 ⊑ C2]

= C1[x]

Conversely, assume that for all x ∈ C1 we have that C1[x] = C2[x]. Then,
since x ∈ Ci[x], for i ∈ {1, 2}, clearly C1 ⊆ C2. Moreover, for all y ∈ C1

and x ∈ C2, if x ≤C2
y then x ∈ C2[y]. Therefore, since by hypothesis

C1[y] = C2[y], we have x ∈ C1 and x ≤C1 y, as desired. Therefore,
C1 ⊑ C2.

3. Let H1, H2 ∈ Hist(x) and assume that H1 ⌢ H2. This means that there
exists C ∈ Conf (E) such that H1, H2 ⊑ C. Therefore, by point (2), we
have H1 = H1[x] = C[x] = H2[x] = H2.

In words, property (1) says that a history can be always extended to the
full configuration it derives from. Property (2) means that a history of an event
cannot change when the computation evolves. Finally, (3) states that different
histories of the same event are incompatible.

2.2. Hereditary History-Preserving Bisimilarity

Hereditary history-preserving bisimilarity [23] is a classical equivalence in the
true concurrency spectrum. In order to define it over poset event structures,
it is convenient to have an explicit representation of the transitions between
configurations.

Definition 2.4 (transition system). Let E be an event structure. If C,C ′ ∈
Conf (E) with C ⊑ C ′ we write C

X−→ C ′ where X = C ′ \ C.

When X is a singleton, i.e., X = {x}, we will often write C
x−→ C ′ instead

of C
{x}−−→ C ′. It is easy to see that in an event structure each configuration is

reachable in the transition system from the empty one.

Lemma 2.2 (configurations are reachable). Let E be an event structure and let
C ∈ Conf (E) be a configuration. Then ∅ −→∗ C. More in detail, if x1, x2, . . . , xn

is any linearisation of C compatible with ≤C then, for all k ∈ {1, . . . , n},
{x1, . . . , xk−1}

xk−→ {x1, . . . , xk−1, xk} .

Proof. Immediate consequence of the prefix-closedness of the family of configu-
rations.

7



As it happens in the interleaving approach, a bisimulation between two event
structures requires any event of an event structure to be simulated by an event
of the other, with the same label. Additionally, the two events are required to
have the same “causal history”.

Definition 2.5 ((hereditary) history-preserving bisimilarity). Let E, E′ be event
structures. A history-preserving (hp-)bisimulation is a set R of triples (C, f, C ′),
where C ∈ Conf (E), C ′ ∈ Conf (E′) and f : C → C ′ is an isomorphism of
configurations, such that (∅, ∅, ∅) ∈ R and for all (C1, f, C

′
1) ∈ R

1. for all C1
x−→ C2 there exists C ′

1
x′

−→ C ′
2 such that (C2, f [x 7→ x′], C ′

2) ∈ R;

2. for all C ′
1

x′

−→ C ′
2 there exists C1

x−→ C2 such that (C2, f [x 7→ x′], C ′
2) ∈ R.

Relation R is called a hereditary history-preserving (hhp-)bisimulation if, in
addition, it is downward-closed, i.e., if (C1, f, C

′
1) ∈ R and C2 ⊆ C1 then

(C2, f|C2
, f(C2)) ∈ R.

Observe that, in the definition above, an event must be simulated by an event
with the same label. In fact, in the triple (C ∪ {x}, f [x 7→ x′], C ′ ∪ {x′}) ∈ R,
the second component f [x 7→ x′] must be an isomorphism of configurations, i.e.,
of labelled posets, and thus it preserves labels. Hhp-bisimilarity has been shown
to arise as a canonical behavioural equivalence on prime event structures, as an
instance of a general notion defined in terms of the concept of open map, when
considering partially ordered computations as observations [25].

2.3. Examples: Prime, Asymmetric, Flow and Bundle Event Structures

We next observe how different kinds of event structures, introduced for vari-
ous purposes in the literature, can be naturally viewed as subclasses of the poset
event structures in Definition 2.2. This section is mainly intended to provide
material for examples and discussions. The reader can quickly browse through
it: only the correspondence with prime event structures will play a major role
in the rest of the paper.

Prime event structures. Prime event structures [3] are one of the sim-
plest and most popular event structure models, where dependencies between
events are captured in terms of causality and conflict.

Definition 2.6 (prime event structure). A prime event structure (pes, for
short) is a tuple P = ⟨E,≤,#, λ⟩, where E is a set of events, ≤ and # are
binary relations on E called causality and conflict, respectively, and λ : E → Λ
is a labelling function, such that

• ≤ is a partial order and ⌊x⌋ = {y ∈ E | y ≤ x} is finite for all x ∈ E;

• # is irreflexive, symmetric and hereditary with respect to causality, i.e.,
for all x, y, z ∈ E, if x#y and y ≤ z then x#z.

The absence of conflicts between events is normally referred to as consistency.
For later use, it is convenient to introduce a notation for it.
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Figure 2: Some prime event structures

a12 c b3
a12

b12
a12 c b3 c

a12 c

b12

Figure 3: The configurations Conf (P2) of the pes P2 in Fig. 2 viewed as a poset event structure

Definition 2.7 (consistency). Let P = ⟨E,≤,#, λ⟩ be a pes. We say that
x, y ∈ E are consistent, written x ⌢ y, when ¬(x#y). A subset X ⊆ E is called
consistent, written ⌢X, when its elements are pairwise consistent.

Configurations are consistent sets of events closed with respect to causality.

Definition 2.8 (pes configuration). Let P = ⟨E,≤,#, λ⟩ be a pes. A configu-
ration of P is a finite set of events C ⊆ E such that (i) for all x ∈ C, ⌊x⌋ ⊆ C
and (ii) ⌢C.

Some examples of pess can be found in Fig. 2. Causality is represented as
a solid arrow, while conflict is represented as a dotted line. For instance, in P0,
event a1 is a cause of b1 and it is in conflict with both a2 and b3. Only direct
causalities and non-inherited conflicts are represented. For instance, in P0, the
conflicts a1#b2, a2#b1, b1#b2, b1#b3 and b2#b3 are not represented since they
are inherited. The labelling is implicitly represented by naming the events by
their label, possibly with some index. E.g., a1 and a2 are events labelled by a.

Clearly pess can be seen as poset event structures. Given a pes P = ⟨E,≤
,#, λ⟩ and its set of configurations Conf (P), the local order of a configuration
C ∈ Conf (P) is ≤C=≤ ∩(C × C), i.e., the restriction of the causality relation
to C. The extension order turns out to be simply subset inclusion. In fact,
given C1 ⊆ C2 clearly ≤C1

=≤ ∩(C1 × C1) is the restriction to C1 of ≤C2
=≤
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∩(C2×C2). Moreover, if x1 ∈ C1 and x2 ∈ C2, with x2 ≤C2 x1, then necessarily
x2 ∈ C1 since configurations are causally closed. As an example, the pes P2 of
Fig. 2, viewed as a poset event structure, can be found in Fig. 3.

Asymmetric event structures. Asymmetric event structures [6] are a
generalisation of pess where conflict is allowed to be non-symmetric.

Definition 2.9 (asymmetric event structure). An asymmetric event structure
(aes, for short) is a tuple A = ⟨E,≤,↗, λ⟩, where E is a set of events, ≤
and ↗ are binary relations on E called causality and asymmetric conflict, and
λ : E → Λ is a labelling function, such that

• ≤ is a partial order and ⌊x⌋ = {y ∈ E | y ≤ x} is finite for all x ∈ E;

• ↗ satisfies, for all x, y, z ∈ E

1. if x < y then x ↗ y;

2. if x ↗ y and y < z then x ↗ z;

3. ↗ is acyclic on ⌊x⌋;
4. if ↗ is cyclic on ⌊x⌋ ∪ ⌊y⌋ then x ↗ y.

In the graphical representation, asymmetric conflict is depicted as a dotted
arrow. For instance, in the asymmetric event structure A0 of Fig. 4 we have
a12 ↗ b123. Again, only non inherited asymmetric conflicts are represented.

The asymmetric conflict relation has two natural interpretations, i.e., x ↗ y
can be understood as (i) the occurrence of y prevents x, or (ii) x precedes y
in all computations where both appear. This allows us to represent faithfully
the existence of precedences between actions and concurrent read accesses to a
shared resource (intuitively, while readings can occur concurrently, destructive
accesses can follow, but obviously not precede a reading).

The interpretation of asymmetric conflict above should give some intuition
for the conditions in Definition 2.9. Condition (1) naturally arises from inter-
pretation (ii) above: when x < y clearly x precedes y when both occur and
thus x ↗ y. Condition (2) is a form of hereditarity of asymmetric conflict along
causality: if x ↗ y and y < z then all runs where x and z appear, necessarily
also include y, and x precedes y which in turn precedes z, hence x ↗ z. Con-
cerning (3) and (4), observe that events forming a cycle of asymmetric conflict
cannot appear in the same run, since each event in the cycle should occur before
itself in the run. For instance, in the aes A1 of Fig. 4, we have a1 ↗ a2 ↗ a1,
hence a1 and a2 cannot appear in the same computation. In this view, condition
(3) corresponds to irreflexiveness of conflict in pess, while condition (4) requires
that binary symmetric conflict is explicitly represented by asymmetric conflict
in both directions. Indeed, prime event structures can be identified with the
subclass of aess where ↗ is symmetric.

Configurations are again defined as sets of events which are causally closed
and conflict free.
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Figure 4: Some asymmetric event structures

Definition 2.10 (aes configuration). Let A = ⟨E,≤,↗, λ⟩ be an aes. A
configuration of A is a finite set of events C ⊆ E such that (i) for any x ∈ C,
⌊x⌋ ⊆ C (causally closed) (ii) ↗ is acyclic on C (conflict free).

Also aess can be seen as special poset event structures. Given an aes
A = ⟨E,≤,↗, λ⟩ and its set of configurations Conf (A), the local order of a con-
figuration C ∈ Conf (A) is ≤C= (↗ ∩(C×C))∗, i.e., the transitive closure of the
restriction of the asymmetric conflict to C. The prefix order on configurations
is not simply set-inclusion: since a configuration C cannot be extended with an
event which is prevented by some of the events already present in C. Hence for
C1, C2 ∈ Conf (A) we have C1 ⊑ C2 iff C1 ⊆ C2 and for all x ∈ C1, y ∈ C2 \C1,
¬(y ↗ x). For instance, the configurations Conf (A0) of the aes A0 in Fig. 4,
ordered by prefix, can be obtained from those of Fig. 3, by replacing all oc-
currences of b12 and b3, by b123. Note, e.g., that {b123} ̸⊑ {a12, b123} since
a12 ↗ b123.

Flow event structures. In some situations, it can be quite useful to have
the possibility of modelling in a direct way the presence of multiple disjunctive
and mutually exclusive causes for an event, something that is not possible in
pess and in aess, where for each event there is a uniquely determined minimal
set of causes. For instance, in a process calculus with non deterministic choice
“+” and sequential composition “;” in order to give a pes semantics to (a+b); c
we are forced to use two different events to represent the execution of c, one for
the execution of c after a and the other for the execution of c after b.

We briefly describe a model that overcomes this limitation, namely flow [7, 8]
event structures.

Definition 2.11 (flow event structure). A flow event structure (fes) is a tuple
F = ⟨E,≺,#, λ⟩, where E is a set of events, ≺⊆ E ×E is an irreflexive relation
called the flow relation, # ⊆ E × E is the symmetric conflict relation, and
λ : E → Λ is a labelling function.

Causality is replaced by an irreflexive (in general non transitive) flow relation
≺, intuitively representing immediate causal dependency. Moreover, conflict is
no longer hereditary.
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a b c

d0 d1 d2

a b c

d01 d2

a b c

d0 d12

a b c

d012
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Figure 5: Some flow event structures

An event can have causes which are in conflict and these have a disjunctive
interpretation, i.e., the event will be enabled by a maximal conflict-free subset
of its causes. This is formalised by the notion of configuration.

Definition 2.12 (fes configuration). Let F = ⟨E,≺,#, λ⟩ be a fes. A con-
figuration of F is a finite set of events C ⊆ E such that (i) ≺ is acyclic on C,
(ii) ¬(x#x′) for all x, x′ ∈ C and (iii) for all x ∈ C and y /∈ C with y ≺ x, there
exists z ∈ C such that y#z and z ≺ x.

Some examples of fess can be found in Fig. 5. Relation ≺ is represented
by a double headed solid arrow. For instance, consider the fes F1. The set
C = {a, d01} is a configuration. We have b ≺ d01 and b ̸∈ C, but this is fine
since there is a ∈ C such that a#b and a ≺ d01.

Under mild assumptions that exclude the presence of non-executable events
(a condition referred to as fullness in [8]), fess can be seen as poset event
structures, by endowing each configuration C with a local order arising as the
reflexive and transitive closure of the restriction of the flow relation to C, i.e.,
≤C= (≺ ∩(C×C))∗. Note that excluding the presence of non-executable events
is necessary since in a poset event structure the set of events must coincide with
the union of all configurations (condition E =

⋃
Conf (E) in Definition 2.2) and

all configurations are reachable (Lemma 2.2), hence all events are executable.

Bundle event structures. Bundle event structures [9, 14] are another
event structure model that has been introduced in order to enable a direct
representation of disjunctive causes, thus easing the definition of the semantics
of the process description language lotos.

Definition 2.13 (bundle event structure). A bundle event structure(bes) is a
triple B = ⟨E, 7→,#⟩, where E is the set of events, # ⊆ E ×E is the irreflexive
symmetric conflict relation and 7→⊆ 2E

fin ×E is the bundle relation such that if
X 7→ x then X ×X ⊆ #.

Whenever X 7→ x the set X is called a bundle for the event x. It can be
seen as a set of disjunctive and mutually exclusive causes for the event. The
explicit representation of the bundles makes bundle event structures strictly
less expressive than flow event structures, as briefly discussed below. On the
other hand, bundle event structures offer the advantage of having a simpler
theory. For instance, differently from what happens for flow event structures,
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non-executable events can be removed without affecting the behaviour of the
event structure.

Configurations are conflict free sets of events such that if some event e is in
the set then an event from of each of the bundles of e is also included in the set.

Definition 2.14 (bes configuration). Let B = ⟨E, 7→,#⟩ be a bes. Let 7→→
denote the binary relation on E defined, for x, y ∈ E, by x 7→→ y if X 7→ y and
x ∈ X. A finite set C ⊆ E is a configuration if (i) the relation 7→→ is acyclic on
C (ii) ¬(x#y) for all x, y ∈ C; (iii) X ∩ C ̸= ∅ for all x ∈ C and X 7→ x.

Again, under the assumption that there are no non-executable events, one
can turn a bes into a poset event structure in the sense of Definition 2.2 by
endowing each configuration C with an order ≤C= (7→→ ∩(C × C))∗.

Comparing models. It can be easily seen that the expressive power of
aess is incomparable with that of fess and bess. This is due to the fact
that aess cannot represent disjunctive causes, while fess and bess cannot
represent asymmetric conflicts. For instance, consider the fes F4 in Fig. 6
(which can be also seen as a bes with a bundle {a, b} for c). We have
Conf (F4) = {∅, {a}, {b}, {a, c}, {b, c}} and it is easily seen that no aes exists
with the same configurations. Now, consider the aes A in Fig. 6. We have
Conf (A) = {∅, {a}, {b}, {a, b}} and also here it is immediate to see that there
is no fes or bes having the same configurations. In passing, we note also that
this behavior cannot be expressed in terms of a configuration structure [32]. In
fact, as shown in Fig. 6, in Conf (A), the configuration {a, b} is not an extension
of {b}, consistently with the fact that a cannot be executed after b. Instead, in
a configuration structure, where the order between configurations is just subset
inclusion, configuration {a, b} would be unavoidably seen as an extension of {b}.

In addition, as mentioned above and discussed in detail in [33, 14], bess are
strictly less expressive then fess. For instance, for the fes F5 in Figure 6 there
is no bes having the same configurations. This can be seen by observing that
here only pairs of conflicting events can be in the same bundle.

Event structures models joining the features of aess with those of fess and
bess have been considered in the literature, like extended bess [14], wich enrich
bess with asymmetric conflict, and fess with possible flow [34, 35], which extend
fess with a possible flow relation enabling the representation of asymmetric
conflicts. Also these generalised models can be viewed as poset event structures.

3. Foldings of Event Structures

In this section, we study a notion of folding, which is intended to formalise
the intuition of a behaviour-preserving quotient for an event structure. We
prove that there always exists a minimal quotient and we show that foldings
between general poset event structures always arise, in a suitable formal sense,
from foldings over prime event structures.
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Figure 6: Separating examples for aess, fess, bess

3.1. Morphisms and Foldings

We first endow event structures with a notion of morphism. Below, given
two event structures E, E′, a function f : E → E′ and a configuration C ∈
Conf (E), we write f(C) to refer to the configuration whose underlying set is
{f(x) | x ∈ C}, endowed with the order f(x) ≤f(C) f(y) iff x ≤ y.

Definition 3.1 (morphism). Let E,E′ be event structures. A (strong) morphism
f : E → E′ is a function between the underlying sets of events such that λ = λ′◦f
and for all configurations C ∈ Conf (E), the function f is injective on C and
f(C) ∈ Conf (E′).

Hereafter, the qualification “strong” will be omitted since this is the only
kind of morphisms we deal with. It is motivated by the fact that normally
morphisms on event structures are designed to represent simulations. If this were
the purpose, then the requirement on preservation of configurations could have
been weaker, i.e., we could have asked the order in the target configuration to be
included in (not identical to) the image of the order of the source configuration
(precisely, given a configuration ⟨C,≤C⟩ ∈ Conf (E) then there exists ⟨C ′,≤C′

⟩ ∈ Conf (E′) such that C ′ = f(C) and for all x, y ∈ C, f(x) ≤C′ f(y) implies
x ≤C y). Moreover, morphisms could have been partial. However, in our
setting, for the objective of defining history-preserving quotients, the stronger
notion works fine and simplifies the presentation.

Remark 1. The composition of morphisms is a morphism and the identity is a
morphism. Hence the class of event structures and event structure morphisms
form a category ES.

Lemma 3.1 (morphisms preserve prefixes). Let E,E′ be event structures, let
f : E → E′ be a morphism and let C1, C2 ∈ Conf (E) be configurations. If
C1 ⊑ C2 then f(C1) ⊑ f(C2).

Proof. Immediate, since from the definition of morphism we have C1 ≃ f(C1)
and C2 ≃ f(C2).

Definition 3.2 (folding). Let E and E′ be event structures. A folding is a mor-
phism f : E → E′ such that the relation Rf = {(C, f|C , f(C)) | C ∈ Conf (E)} is
a hhp-bisimulation. A folding is called elementary if there is a set X ⊆ E such
that for all x, y ∈ E, x ̸= y, we have f(x) = f(y) if and only if x, y ∈ X.
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In words, a folding is a function that “merges” some sets of events of an
event structure into single events without altering the behaviour modulo hhp-
bisimilarity. It is elementary if it merges only a single set of events. In [27]
the notion of folding asks for the preservation of hp-bisimilarity, a weaker be-
havioural equivalence which is defined as hhp-bisimilarity but omitting the re-
quirement of downward-closure. Note that, as far as the notion of folding is
concerned, this makes no difference: Rf is downward-closed by definition, hence
it is a hhp-bisimulation whenever it is a hp-bisimulation. Instead, taking hhp-
bisimilarity as the reference equivalence appears to be the right choice for the
development of the theory. E.g., it allows one to prove Lemma 3.8 that plays
an important role for arguing about the adequateness of the notion of folding.
Interestingly, foldings can be characterised as open maps in the sense of [25], by
taking conflict free prime event structures as subcategory of observations. This
is explicitly worked out in Appendix A.

As an example, consider the pess in Fig. 2 and the function f02 : P0 → P2

that maps events as suggested by the indices, i.e., f02(a1) = f02(a2) = a12,
f02(b1) = f02(b2) = b12, f02(b3) = b3 and f02(c) = c. Then it is easy to
see that f02 is a folding. Note that, instead, f01 : P0 → P1, again mapping
events according to their indices, is a morphism but not a folding. In fact,

f01({a1}) = {a12}
b2−→ {a12, b2}, but clearly there is no transition {a1}

x−→ with
f01(x) = b2, since x can only be b1 and the only counterimage of b2 in P0 is b2.

It is also interesting to observe that the greater expressiveness of aess allows
one to obtain smaller quotients. For instance, while the pes P2 in Fig. 2 is
minimal in the class of pess, if we view it as an aes, it can be further reduced.
In fact the obvious function from P2 to the aes A0 in Fig. 4 can be easily seen
to be a folding. Observe that this folding “transforms” the causality a12 < b12
in P2 into an asymmetric conflict a12 ↗ b123 in A0. This is legal because also
the event b3 in P2, in conflict with a12, is mapped to b123. In this way the the
situation in which in A0 the event b123 is executed before a12, thus disabling
this latter event, can be simulated in P2 by executing b3.

Lemma 3.2 (foldings are closed under composition). Let E, E′, E′′ be event
structures and let f : E → E′ and f ′ : E′ → E′′ be foldings. Then f ′ ◦ f : E → E′′

is a folding.

Proof. We rely on the characterisation of foldings provided in Lemma 3.3. Let

C1 ∈ Conf (E) and assume that f ′(f(C1))
x′′

−−→ C ′′
2 . Since f(C1) ∈ Conf (E′) and

f ′ is a folding, there exists x′ such that f(C1)
x′

−→ C ′
2 with f ′(x′) = x′′ and

f ′(C ′
2) = C ′′

2 . In turn, since f is a folding, from f(C1)
x′

−→ C ′
2, we derive the

existence of a transition C1
x−→ C2 with f(x) = x′ and f(C2) = C ′

2. Therefore
f ′(f(x)) = x′′ and f ′(f(C2)) = C ′′

2 , as desired.

Remark 2. Since composition of foldings is a folding (Lemma 3.2) and the
identity is a folding, we can consider a subcategory ESf of ES with the same
objects and foldings as morphisms.
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Again in the setting of aess, consider the structures in Fig. 4 and the func-
tions g12 : A1 → A2, and g23 : A2 → A3, naturally induced by the indices. These
can be seen to be foldings. The first one merges c1, in conflict with b and c2
caused by b to a single event c12, in asymmetric conflict with b. The second
one merges the two conflicting events a1 and a2 into a single one a12. Their
composition g13 = g23 ◦ g12 : A1 → A3 is again a folding.

As a last example, consider the fess in Fig. 5. Again the obvious functions
from F0 to F1 and F2 can be seen to be foldings. Instead, seen as a pes, the
event structure F0 is minimal.

The next result shows that if we know that f : E → E′ is a morphism, then
half of the conditions needed to be a hhp-bisimulation and thus a folding, i.e.,
condition (1) in Definition 2.5, is automatically satisfied. This is used later in
proofs whenever we need to show that some map is a folding.

Lemma 3.3 (from morphisms to foldings). Let E and E′ be event structures
and let f : E → E′ be a morphism. If for all C1 ∈ Conf (E) and transition

f(C1)
x′

−→ C ′
2 there exists C1

x−→ C2 such that f(C2) = C ′
2 then f is a folding.

Proof. We have to show that Rf = {(C, f|C , f(C)) | C ∈ Conf (E)} satisfies
conditions (1) and (2) of Definition 2.5. Condition (2) is in the hypotheses.

Concerning (1), let C1 ∈ Conf (E) and consider a transition C1
x−→ C2. Then

by definition of morphism, f(Ci) is in Conf (E) and it is isomorphic to Ci, for

i ∈ {1, 2}. Therefore f(C1)
f(x)−−−→ f(C2).

Another simple but crucial result shows that the target event structure for
a folding is completely determined by the mapping on events. This allows us to
view foldings as equivalences on the source event structures. We first define the
quotient induced by a morphism.

Definition 3.3 (quotients from morphisms). Let E, E′ be event structures
and let f : E → E′ be a morphism. Let ≡f be the equivalence relation on E
defined by x ≡f y if f(x) = f(y). We denote by E/≡f

the event structure with

configurations Conf (E/≡f
) = {[C]≡f

| C ∈ Conf (E)} where [C]≡f
= {[x]≡f

|
x ∈ C} is ordered by [x]≡f

≤[C]≡f
[y]≡f

iff x ≤C y.

It is immediate to see that E/≡f
is a well-defined event structure. This also

follows from the lemma below.

Lemma 3.4 (folding as equivalences). Let E, E′ be event structures and let
f : E → E′ be a morphism. If f is a folding then E/≡f

is isomorphic to E′.

Proof. Consider the function g : E/≡f
→ E′ defined by g([x]≡f

) = f(x). It is well

defined, since all elements in [x]≡f
have the same f -image, and clearly injective.

Moreover, it is also surjective. In fact, if x′ ∈ E′ then there exists C ′ ∈ Conf (E′)
such that x′ ∈ C ′. By Lemma 2.2, configuration C ′ is reachable from the empty
one, and thus, since f is an hp-bisimulation, there exists C ∈ Conf (E) such that
C ′ = f(C). Therefore there is x ∈ C such that f(x) = x′ and thus g([x]≡f

) = x′.
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Finally, observe that by definition, for all configuration C ′ ∈ Conf (E/≡f
),

we have g(C ′) ≃ C ′, hence we conclude.

The previous result allows us to identify foldings with the corresponding
equivalences on the source event structures and motivates the following defini-
tion.

Definition 3.4 (folding equivalences). Let E be an event structure. The set of
folding equivalences over E is FEq(E) = {≡f | f : E → E′ folding for some E′}.

Hereafter, we will freely switch between the two views of foldings as mor-
phisms or as equivalences, since each will be convenient for some purposes.

We next observe that given two foldings we can always take their “join”,
providing a new folding that, roughly speaking, produces a smaller quotient than
both the original ones. We first show a useful factorisation property involving
morphisms and foldings.

Lemma 3.5 (factorising morphisms). Let E, E′, E′′ be event structures and let
f : E′′ → E′ be a morphism and h : E′′ → E be a folding. Let g : E → E′ be a
function such that f = g ◦ h.

E E′

E′′

g

f
h

Then g is a morphism. Moreover, if f is a folding then g is.

Proof. Let us show that g is a morphism. For all C ∈ Conf (E), since h is a
folding, there exists C ′′ ∈ Conf (E′′) such that h(C ′′) = C and C ′′ ≃ C. Since
f is a morphism f(C ′′) ∈ Conf (E′). Therefore g(C) = g(h(C ′′)) = f(C ′′), as
desired.

Let us assume now that g is a folding. Let C1 ∈ Conf (E) and suppose that

there is a transition g(C1)
x′

−→ C ′
2. Since h is a folding, there is a configuration

C ′′
1 ∈ Conf (E′′) such that C1 = h(C ′′

1 ). Therefore f(C
′′
1 ) = g(h(C ′′

1 ) = g(C1)
x′

−→
C ′

2. Since f is a folding there is a transition C ′′
1

x′′

−−→ C ′′
2 with f(C ′′

2 ) = C ′
2.

Therefore h(C ′′
2 ) = C1

h(x′′)−−−−→ h(C ′′
2 ) with g(h(C ′′

2 )) = f(C2) = C ′
2, as desired.

We can then prove the desired result concerning the possibility of joining
foldings.

Proposition 3.6 (joining foldings). Let E,E′,E′′ be event structures and let
f ′ : E → E′, f ′′ : E → E′′ be foldings. Define E′′′ as the quotient E/≡ where ≡ is
the transitive closure of ≡f ′ ∪ ≡f ′′ . Then g′ : E′ → E′′′ defined by g′(x′) = [x]≡
if f ′(x) = x′ and g′′ : E′′ → E′′′ defined by g′′(x′′) = [x]≡ if f ′′(x) = x′′ are
foldings.
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Proof. We actually show that the construction described in the statement pro-
duces the pushout in the category ES and also in ESf . Consider the diagram

E

E′ E′′

E′′′

f ′ f ′′

g′ g′′

Observe that E′′′, with functions g′ and g′′ is the pushout in Set, as it easily
follows recalling that f ′ and f ′′ are surjective. Another immediate observation
is that the set of configurations of E′′′ can be written

Conf (E′′′) = {g′(f ′(C)) | C ∈ Conf (E)} = {g′′(f ′′(C)) | C ∈ Conf (E)} (1)

We prove that g′ is a folding. In fact

• g′ is a morphism.
For all C ′ ∈ Conf (E′), since f ′ is a folding, there is C ∈ Conf (E) such that
f ′(C) = C ′. Therefore g′(C ′) = g′(f ′(C)) ∈ Conf (E′′′), by construction.
Moreover, g′ is injective on C ′. In fact, take x′, y′ ∈ C ′, with g′(x′) =
g′(y′). Since C ′ = f ′(C), there are x, y ∈ C such that f ′(x) = x′ and
f ′(y) = y′. Therefore, g′(f ′(x)) = g′(f ′(y)), and thus, by the properties
of pushouts, f ′′(x) = f ′′(y). Since f ′′ is a folding, thus a morphism, this
implies x = y and thus x′ = f ′(x) = f ′(y) = y′, as desired.

• g′ is a folding.

Let C ′
1 ∈ Conf (E′) and assume that f ′(C ′

1)
x′′′

−−→ D′′′
2 . By (1) we know

that there is D2 ∈ Conf (E) such that D′′′
2 = g′(f ′(D2)) and D2 ≃ D′′′

2 .
Therefore, there is D1 ⊑ D2 such that f ′(g′(D1)) = g′(C ′

1) and

D1
x−→ D2. (2)

Define D′
1 = f ′(D1) ∈ Conf (E′). Now, since f ′ is a folding and C ′

1 ∈
Conf (E1), there is also C1 ∈ Conf (E) such that f ′(C1) = C ′

1. Recall that
g′(D′

1) = f ′(g′(D1)) = g′(C ′
1), hence, by pushout properties, it must be

f ′′(C1) = f ′′(D1). From (2), since f ′′ is a folding, we deduce f ′′(C1) =

f ′′(D1)
x′′

−−→ D′′
2 , with f ′′(D2) = D′′

2 . And, using again the fact that f ′′ is

a folding, this implies C1
y−→ C2, with f ′′(C2) = D′′

2 = f ′′(D2).

Now, we use the fact that f ′ is a folding, and derive that C ′
1 =

f ′(C1)
f ′(x1)−−−−→ f ′(C2). If we call C ′

2 = f ′(C2), we have that g′(C ′
2) =

g′(D′
2), as desired, since f ′′(C2) = f ′′(D2).

In the same way, one concludes that also g′′ is a folding.
Given any other E1 with morphisms g′1 : E′ → E1 and g′′1 : E′′ → E1 such

that g′1 ◦f ′ = g′2 ◦f ′′, we show that there exists a unique morphism h : E′′′ → E1

that makes the diagram commute.
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Figure 7: Non existence of pushout of general morphisms
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E′ E′′

E′′′
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f ′ f ′′

g′

g′
1

g′′

g′′
1

h

Consider the unique map h : E′′′ → E1 making the diagram commute in Set.
Since g′ is a folding and g′1 is a morphism, by Lemma 3.5, also h is a morphism.
This proves that E′′′ is a pushout in ES.

By the same result, if g′1 is a folding, also the mediating morphism h is. This
means that the same construction produces a pushout in ESf .

As an example, consider the pes in Fig. 2 and two morphisms f30 : P3 →
P0 and f31 : P3 → P1. The way all events are mapped by f30 and f31 is
naturally suggested by their labelling, apart from the events bij for which we
let f30(bij) = bi while f31(bij) = bj . It can be seen that both are foldings.
Their join, constructed as in Proposition 3.6, is P2 with the folding morphisms
f02 : P0 → P2 and f12 : P1 → P2.

Remark 3. Proposition 3.6 is a consequence of the fact that the category ES
has pushouts of foldings. Indeed, E′′′ as defined in Proposition 3.6 is the pushout
of f ′ and f ′′ (in ES and also in ESf ).

Also note that ES does not have all pushouts. As a counterexample to the
existence of pushouts in ES for general morphisms, consider the obvious map-
pings f45 : P4 → P5 and f46 : P4 → P6 in Fig. 7. It is easy to realise that, if
a pushout existed, the mapping from P5 into the pushout object should identify
the concurrent events a1 and a2, failing to be an event structure morphism.

When interpreted in the set of folding equivalences of an event structure,
Proposition 3.6 has a clear meaning. Recall that the equivalences over some
fixed set X, ordered by inclusion, form a complete lattice, where the top element
is the universal equivalence X ×X and the bottom is the identity on X. Then
Proposition 3.6 implies that FEq(E) is a sublattice of the lattice of equivalences.
Actually, it can be shown that FEq(E) is itself a complete lattice. This implies
that each event structure E admits a maximally folded version.
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Theorem 3.7 (lattice of foldings). Let E be an event structure. Then FEq(E)
is a sublattice of the complete lattice of equivalence relations over E.

Proof. We proceed by showing a generalisation of Proposition 3.6 from which
the thesis follows. We prove that for any event structure E, each collection of
foldings fi : E → Ei, with i ∈ I, admits a colimit in ES.

When I is finite, the proof proceeds by straightforward induction on I, using
Proposition 3.6. If instead I is infinite, let E′ be the colimit of the fi’s in Set.

E

Ei Ej . . .

E′

f ′
i

fj

gi

gj

with configurations Conf (E′) = {gi(fi(C)) | C ∈ Conf (E)}. The proof of
the fact that the gi’s are foldings then proceeds as in Proposition 3.6. The
only delicate point is the following. Given configurations C,C ′ ∈ Conf (E),
define Ci = f(C) and C ′

i = f(C ′) ∈ Conf (Ei). If gi(Ci) = gi(C
′
i), then it is

not necessarily the case that fj(C) = fj(C
′) for some j ∈ I. However, since

configurations are finite, there is a finite subset J ⊆ I such that, if EJ is the
colimit of {fj | j ∈ J} and fJ : E → EJ the corresponding folding, whose
existence is proved in the first part, then fJ(C) = fJ(C

′). Exploiting this fact,
we can conclude exactly as in Proposition 3.6.

Remark 4. The proof of Theorem 3.7 shows that for any event structure E,
each collection of foldings fi : E → Ei, with i ∈ I, admits a colimit in ES. Thus
the coslice category (E ↓ ESf ) has a terminal object, which is the maximally
folded event structure.

It is natural to ask whether all behaviour preserving quotients correspond
to foldings. Strictly speaking, the answer is negative. More precisely, there
can be morphisms f : E → E′ such that E/≡f

is hhp-bisimilar to E, but f is
not a folding. For an example, consider the pess P0 and P1 in Fig. 2 and the
morphism f01 : P0 → P1 suggested by the indexing. We already observed this
is not a folding, but P0/≡f01

, which is isomorphic to P1, is hhp-bisimilar to P0.

However, we can show that for any behaviour preserving quotient, there is
a folding that produces a coarser equivalence, and thus a smaller quotient. For
instance, in the example discussed above, there is the folding f02 : P0 → P2,
that “produces” a smaller quotient.

This follows from two results. The first one is the possibility of joining
foldings (Proposition 3.6). The second one, proved below, is the possibility of
viewing a hhp-bisimulation between two event structures E′, E′′ as an event
structure itself. This is a generalisation to our setting of a property proved for
pess in [23].
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Lemma 3.8 (hhp-bisimulation as an event structure). Let E′, E′′ be event struc-
tures and let R be a hhp-bisimulation between them. Then there exists a (prime)
event structure ER and two foldings π′ : ER → E′ and π′′ : ER → E′′.

Proof. Let E′, E′′ be event structures and let R be a hhp-bisimulation between
them. Define ER as follows. Events are histories related by R, namely the
triples {(H ′, f,H ′′)} | H ′ ∈ Hist(E′)}, labelled by λER

(H ′, f,H ′′) = λE(x
′)

when H ′ ∈ Hist(x′). For each (C ′, f, C ′′) ∈ R, define

Cf = {(C ′[x′], f|C′[x′], C
′′[f(x′)]) | x ∈ C ′}

ordered by pointwise inclusion, i.e., (H ′
1, f1, H

′′
1 ) ≤Cf

(H ′
2, f2, H

′′
2 ) if f1 ⊆ f2,

and thus H ′
1 ⊆ H ′′

1 , H
′
2 ⊆ H ′′

2 . The set of configurations of ER is Conf (ER) =
{CR | C ∈ Conf (E)}.

It is easy to see that Conf (ER) is well-defined. Prefix-closedness of
Conf (ER) follows from the fact that R is downward-closed by definition of hhp-
bisimulation. It can be seen that ER is actually a prime event structure, with
causality defined by (H ′

1, f1, H
′′
1 ) ≤ (H ′

2, f2, H
′′
2 ) if H ′

1 ⊑ H ′
2 and f1 ⊑ f2, and

conflict defined by (H ′
1, f1, H

′′
1 )#(H ′

2, f2, H
′′
2 ) if there is no (C ′, f, C ′′) ∈ R such

that H ′
1, H

′
2 ⊑ C ′ and f1, f2 ⊆ f .

Consider two configurations Cf1 , Cf2 ∈ Conf (ER), arising from the triples
(C ′

i, fi, C
′′
i ) ∈ R, for i ∈ {1, 2}. Then it holds that

Cf1 ⊑ Cf2

iff Cf1 ⊆ Cf2

iff for all x′ ∈ C ′
1, (C

′
1[x

′], f1|C′
1[x

′], C
′′
1 [f1(x

′)]) ∈ Cf2

iff for all x′ ∈ C ′
1, C

′
1[x

′] = C ′
2[x

′] and f1(x
′) = f2(x

′)
iff C ′

1 ⊑ C ′
2 and f1 ⊆ f2.

We can now define π′ : ER → E′ as π′(H ′, f,H ′′) = x′ if H ′ ∈ Hist(x′) and,
similarly, π′′ : ER → E′ as π′′(H ′, f,H ′′) = x′′ if H ′′ ∈ Hist(x′′).

Then π′ and π′′ are well-defined morphisms and they are foldings. We prove
this for π′ (for π′′ the proof is completely analogous).

• π′ is a morphism.
This is immediate by observing that for any configuration Cf ∈
Conf (ER), arising from the triple (C ′, f, C ′′) ∈ R, then we have
π′(Cf ) = C ′. Note that, concerning the local order, for x′, y′ ∈ C ′ we
have (C ′[x′], f|C′[x′], C

′′[f(x′)]) ≤Cf
(C ′[y′], f|C′[y′], C

′′[f(y′)]) iff inclusion
holds pointwise iff x′ ∈ C ′[y′] iff x′ ≤C′ y′, which means π′(C ′[x′]) =
x′ ≤C′ y′ = π′(C ′[y′]).

• π′ is a folding.
In fact, for any configuration Cf ∈ Conf (ER), arising from the triple

(C ′, f, C ′′) ∈ R, if π′(Cf ) = C ′ x′

−→ D′ then, since R is an hhp-

bisimulation, there is C ′′ x′′

−−→ D′′ with (C ′′, g,D′′) ∈ R with g = f [x′ 7→

x′′]. Hence, if we let H ′ = D′[x′], we have that Cf

(H′,g|H′ ,g(H′))
−−−−−−−−−−→ Cg and

π′(Cg) = D′, as desired.
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We can finally prove the desired property.

Proposition 3.9 (foldings subsume behavioural quotients). Let E be an event
structure and let f : E → E′ be a morphism such that E/≡f

is hhp-bisimilar to

E. Then there exists a folding g : E → E′′ such that ≡g is coarser than ≡f .

Proof. Let R be a hhp-bisimulation between E and E/≡f
. Consider the event

structure ER and the foldings π : ER → E and π′ : ER → E/≡f
, given by

Lemma 3.8. By Proposition 3.6 we can close the diagram as follows:

ER

E E/≡f

E′′

π π′

g
g′

and both g and g′ are foldings. Then E′′ = E/≡g
=

(
E/≡f

)
/≡

g′
and we conclude.

We already proved in Theorem 3.7 that every event structure admits a max-
imally folded version. Relying on Lemma 3.8 we can also prove that the maxi-
mally folded versions of hhp-bisimilar event structures are isomorphic, i.e., there
is a unique minimal quotient for each hhp-equivalence class of event structures.

Corollary 3.10 (unique minimal quotient). Let E1 and E2 be hhp-bisimilar
event structures and let E′

1 and E′
2 be the corresponding maximally folded ver-

sions. Then E′
1 and E′

2 are isomorphic.

Proof. Let R be a hhp-bisimulation between E1 and E2. By Lemma 3.8 we can
turn R into a (prime) event structure ER with two foldings π1 : ER → E1 and
π2 : ER → E2. Let f1 : E1 → E′

1 and f2 : E2 → E′
2 be the folding morphism of

E1 and E2 into their maximally folded versions given by Theorem 3.7.
By Proposition 3.6 we can obtain the following pushout diagram

ER

E1 E2

E′
1 E′

2

E

π1 π2

f1 f2

g1 g2

For i ∈ {1, 2}, since fi ◦ πi : Ei → E is a folding and E′
i is final in (Ei ↓ ESf )

we deduce that E′
i is isomorphic to E. Hence E′

1 and E′
2 are isomorphic, as

desired.
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Remark 5. Corollary 3.10, in categorical terms, shows that for every event
struture E, the full subcategory of ESf having as objects the event structures
in the hhp-bisimilarity class of E has a terminal object, which is the (common)
maximally folded event structure for the event structures in the class.

3.2. Folding through Prime Event Structures

Here we observe that each poset event structure is the folding of a corre-
sponding canonical pes. We then prove that, interestingly enough, all foldings
between event structures arise from foldings of the corresponding canonical pess.

We start with the definition of the canonical pes associated with an event
structure.

Definition 3.5 (pes for an event structure). Let E be an event structure. Its
canonical pes is P(E) = ⟨Hist(E),⊑,#, λ′⟩ where ⊑ is prefix, # is inconsistency,
i.e., for H1, H2 ∈ Hist(E) we let H1#H2 if ¬(H1 ⌢ H2) and λ′(H) = λ(x) when
H ∈ Hist(x). Given a morphism f : E → E′ we write P(f) : P(E) → P(E′) for
the morphism defined by P(f)(H) = f(H).

It can be easily seen that the definition above is well-given. In particular,
P(E) is a well-defined pes because, as proved in [28], a family of posets ordered
by prefix is a finitary coherent prime algebraic domain. Then the tight relation
between this class of domains and pess highlighted in [3] allows one to conclude
the proof. For instance, in Fig. 1(right) one can find the canonical pes for the
event structure on the left.

The canonical pes associated with an event structure can always be folded
to the original event structure. For this purpose, it is useful to state some
properties of the corresponding partial orders of configurations.

Lemma 3.11 (configurations of the canonical pes). Let E be an event structure.
Then Conf (E) and Conf (P(ES)) seen as partial orders, ordered by prefix, are
isomorphic.

More in detail, for all C ∈ Conf (E) it holds hs(C) = {C[x] | x ∈ C},
with inclusion as local order, is in Conf (P(E)). Moreover C ≃ hs(C) and
hs(·) : Conf (E) → Conf (P(E)) is a poset isomorphism.

Its inverse is as follows. For D ∈ Conf (P(E)) consider fl(D) =
⋃
D. Then,

for each x ∈ fl(D) there exists a unique Hx ∈ D such that Hx ∈ Hist(x).
Define the order ≤fl(D), for x, y ∈ fl(D), by x ≤fl(D) y iff x ∈ Hy. Then
fl(D) ∈ Conf (E) and fl(D) ≃ D as posets.

Proof. Let C ∈ Conf (E) and let us show that hs(C) = {C[x] | x ∈ C}, with
inclusion as local order, is in Conf (P(E)). First, note that hs(C) is consistent
by construction, since C[x] ⊑ C for all x ∈ C. Moreover, it is causally closed. In
fact, if H ⊑ C[x] for some H ∈ Hist(E), then, if H ∈ Hist(y), by Lemma 2.1(2)
we have H = C[x][y] = C[y] ∈ hs(C) . Moreover, hs(C) is isomorphic to C,
the isomorphism established by the mapping C[x] 7→ x. It is clearly bijective.
Moreover, for all x1, x2 ∈ C it holds that C[x1] ⊆ C[x2] iff x1 ∈ C[x2] and thus
x1 ≤C x2.
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Let us show that hs(·) : Conf (E) → Conf (P(E)) is a poset isomorphism.
It is injective. In fact, if hs(C1) = hs(C2) then clearly C1 and C2 contain the
same events. Moreover, ≤C1

=≤C2
and thus the two configurations coincide.

Otherwise, there would be x, y ∈ C1 such that x ≤C1
y and ¬(x ≤C2

y), or
conversely ¬(x ≤C1

y) and x ≤C2
y. Assume, without loss of generality, that we

are in the first case. Then x ∈ C1[y] and x ̸∈ C2[y], and thus hs(C1) ̸= hs(C2)
contradicting the hypotheses. Moreover, it preserves and reflects the prefix
order, i.e., given C1, C2 ∈ Conf (E) we have C1 ⊑ C2 iff hs(C1) ⊆ hs(C2) as it
immediately follows from Lemma 2.1(2).

We conclude, by showing that it is also surjective. Consider any configu-
ration D ∈ Conf (P(E)). Since D has no conflicts, its elements are pairwise
compatible. Therefore, by coherence of the class of configurations, there exists
C ∈ Conf (E) such that H ⊑ C for all H ∈ D. Let fl(D) =

⋃
D. Then, for

each x ∈ fl(D) there exists a unique Hx ∈ D such that Hx ∈ Hist(x), since
by Lemma 2.1(2) different histories of the same event are not compatible. De-
fine the order ≤fl(D), for x, y ∈ fl(D), by x ≤fl(D) y iff x ∈ Hy. It is easy
to check that fl(D) ⊑ C, and thus by prefix closedness of Conf (E), we have
fl(D) ∈ Conf (E). It is now immediate to see that hs(fl(D)) = D, thus we
conclude.

The next lemma shows that every event structure E can be transformed into
an hhp-bisimilar pess P(E) which can be folded into E. For this reason we also
say that E is unfolded to P(E).

Lemma 3.12 (unfolding event structures to pes’s). Let E be an event structure.
Define a function ϕE : P(E) → E, for all H ∈ Hist(E) by ϕE(H) = x if H ∈
Hist(x) for x ∈ E. Then ϕE is a folding.

Proof. The fact that ϕE is a morphism immediately follows from the observation
that ϕE(D) = fl(D). Then by Lemma 3.11, we have D ≃ ϕE(D), as desired.

In order to conclude that it is a folding we show that given D1 ∈ Conf (P(E)),
if ϕE(D1)

x−→ C2 then D1
H−→ D2 with ϕE(D2) = C2. Let C1 = ϕE(D1) and

assume C1
x−→ C2. By definition of transition (Definition 2.4), we have C1 ⊑ C2.

Let Hx = C2[x]. By definition of P(E), the causes ⌊Hx⌋ = {Hx[y] | y ∈ Hx}. For
all y ∈ Hx \ {x}, clearly y ∈ C1. Moreover Hx[y] = C2[y] = C1[y]. Therefore,
by Lemma 2.1(2), Hx[y] ∈ D1. We thus conclude that

D1
Hx−−→ D2

and moreover ϕE(D2) ≃ C2. For the last statement, the only thing to observe
is that the image of the causes of Hx are exactly the causes of x. Indeed we
have, for all H ∈ D2, say H ∈ Hist(y), that H ⊑ Hx iff y ∈ Hx iff y ≤C2

x, as
desired.

We next show that any morphism and any folding from a pes to an event
structure E factorises uniquely through the pes P(E) associated with E (cate-
gorically, ϕE is cofree over E). This will be useful to relate foldings in E with
foldings in P(E).
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Lemma 3.13 (cofreeness of ϕE). Let E be an event structure, let P′ be a pes
and let f : P′ → E be an event structure morphism. Then there exists a unique
morphism g : P′ → P(E) such that f = ϕE ◦ g.

P(E) E

P′

ϕE

f
g

Moreover, when f is a folding then so is g.

Proof. The function g can be defined, for all x′ ∈ P′ as

g(x′) = f(⌊x′⌋)

Note that this is a well-defined morphism. First observe that g(x′) ∈ Hist(E),
hence it is an event in P(E). In fact, for all x′ ∈ P′, since f is a morphism
and ⌊x′⌋ ∈ Conf (P′), f(⌊x′⌋) ∈ Conf (E), and f(⌊x′⌋) ≃ ⌊x′⌋, therefore g(x′) =
f(⌊x′⌋) = f(⌊x′⌋)[f(x′)] ∈ Hist(E). Moreover, the reasoning above shows that
g(x′) ∈ Hist(f(x′)). Therefore, if g(x′) = g(y′) then f(x′) = f(y′). This fact,
recalling that f is injective on configurations, implies that also g is. Finally, for
all C ′ ∈ Conf (P′), since f is a morphism, f(C ′) ∈ Conf (E) and f(C ′) ≃ C ′.
Therefore its g-image is

g(C ′) = {g(x′) | x′ ∈ C ′}
= {f(⌊x′⌋) | x′ ∈ C ′}
= {f(⌊x′⌋)[f(x′)] | x′ ∈ C ′} [Since morphisms preserve prefix order]

= {f(C ′)[f(x′)] | x′ ∈ C ′}
= hs(f(C ′))

Hence, by Lemma 3.11, g(C ′) = hs(f(C ′)) ∈ Conf (P(E)) and hs(f(C ′)) ≃ C ′,
as desired.

For the second part, assume that f is a folding and let us show that also
g is. We use the characterisation in Lemma 3.3. Let C ′

1 ∈ Conf (P′) and

assume that g(C ′
1)

H−→ D2. Since ϕE is a morphism, this implies that f(C ′
1) =

ϕE(g(C
′
1))

ϕE(H)−−−−→ ϕE(D2). Since f is a folding, by Lemma 3.3, there exists

a transition C ′
1

x′

−→ C ′
2 such that f(C ′

2) = ϕE(C2). Observe that this implies
f(x′) = ϕE(H) and more generally f(⌊x′⌋) = ϕE(⌊H⌋), but since ϕE(⌊H⌋) = H

f(⌊x′⌋) = H.

We only need to show that g(C ′
2) = D2. This is an immediate consequence

of the fact that g(C ′
2) = g(C ′

1) ∪ {g(x′)} = D1 ∪ {H} = D2, as desired.

Remark 6. Lemma 3.13 means that the category PES of prime event structures
is a coreflective subcategory of ES, i.e., P : ES → PES can be seen as a functor,
right adjoint to the inclusion I : PES → ES. Moreover, P restricts to a functor
on the subcategory of foldings, P : ESf → PESf , where an analogous result
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holds. This is in line with many classical results in the comparison of models of
concurrency [36]. Intuitively, the existence of a coreflection means that for every
event structure in ES there exists a pes which represents its best approximation
in the category PES, where the idea of approximation is formalised by the notion
of morphism in the category.

We conclude that all foldings between event structures arise from foldings of
the associated pess.

Proposition 3.14 (folding through pess). Let E,E′ be event structures. For all
morphisms f : E → E′ consider P(f) : P(E) → P(E′) defined by P(f)(H) = f(H).
Then f is a folding iff P(f) is a folding.

Proof. Let E,E′ be event structures, let f : E → E′ be a morphism and consider
the commuting diagram

E E′

P(E) P(E′)

f

P(f)

ϕE ϕE′

If f is a folding then f ◦ ϕE : P(E) → E′ is a composition of foldings and thus,
by Lemma 2, it is a folding. In turn, by Lemma 3.13 this implies that P(f) is a
folding.

Conversely, if P(f) is a folding, then ϕE ◦ P(f) : P(E) → E′ is a composition
of foldings and thus, by Lemma 2, it is a folding. In turn, by Lemma 3.5 this
implies that f is a folding.

4. Foldings for Prime and Asymmetric Event Structures

In this section we study foldings on specific subclasses of poset event struc-
tures, providing suitable characterisations. Motivated by the fact that foldings
on general poset event structures always arise from foldings of the corresponding
canonical pess we first and mainly focus on pess. Then we discuss how this can
be extended to asymmetric event structures (and only give a hint to flow and
bundle event structures). We will see that while each pes admits a maximally
folded version, for the other classes of event structures this does not happen in
general.

4.1. Folding Prime Event Structures

Since foldings are special morphisms, we first provide a characterisation of
pes morphisms.

Lemma 4.1 (pes morphisms). Let P and P′ be pess and let f : P → P ′ be
a function on the underlying sets of events. Then f is a morphism iff for all
x, y ∈ P

1. λ′(f(x)) = λ(x);
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2. f(⌊x⌋) = ⌊f(x)⌋; namely (a) for all x′ ∈ P′, if x′ ≤ f(y) there exists x ∈ P
such that x ≤ y and f(x) = x′ (b) if x ≤ y then f(x) ≤ f(y);

3. (a) if f(x) = f(y) and x ̸= y then x#y and (b) if f(x)#f(y) then x#y.

Proof. First observe that pess have global precedence (see Definition C.1) and
x ↷ y iff x ≤ y or x#y.

Now, assume that f is a morphism. Then property (1) holds by def-
inition. Property (2) follows from the fact that ⌊x⌋ ∈ Conf (P). Hence
f(⌊x⌋) ∈ Conf (P′) and f(⌊x⌋) ≃ ⌊x⌋, which implies f(⌊x⌋) = ⌊f(x)⌋.

Concerning condition (3b), observe that from Lemma C.2(1), instantiated
with the notion of ↷ for pess, we get

f(x) ≤ f(y) or f(x)#f(y) implies x ≤ y or x#y.

In particular, if f(x)#f(y) then x ≤ y or x#y and, since conflict is symmetric,
we also have y ≤ x or y#x. It is now easy to see that only the second possibility
x#y can hold true, which is the desired conclusion. Property (3a) immediately
derives from Lemma C.2(2).

Conversely, assume that f satisfies conditions (1)-(3) above. Given a con-
figuration C ∈ Conf (P), by conditions (2a) and (3b), f(C) is a configuration in
P′. By condition (3a), f is injective on C. This, together with condition (2b),
implies that C ≃ f(C).

Those in Lemma 4.1 are the standard conditions characterising (total) pes
morphisms (see, e.g., [4]), with the addition of condition (2b) that is imposed to
ensure that configurations are mapped to isomorphic configurations, as required
by the notion of (strong) morphism (Definition 3.1).

We know that not all pes morphisms are foldings. We next identify some
additional conditions characterising those morphisms which are foldings. The
characterisation is later transferred to folding equivalences where it becomes
simpler.

Theorem 4.2 (pes foldings). Let P and P′ be pess and let f : P → P′ be a
morphism. Then f is a folding if and only if it is surjective and for all W ⊆ P,
x, y ∈ P, y′ ∈ P′

1. if x#∀f−1(y′) then f(x)#y′;

2. if f(x) = f(y), ⌢W and for all w ∈ W w ⌢∃ {x, y} then there exists
z ∈ P such that f(z) = f(x) and ⌢(W ∪ {z}).

Proof. Let f : P → P′ be a folding. Let us first observe that f is surjective.

Take x′ ∈ P′. Since ⌊x′⌋ ∈ Conf (P′), we have that ∅ ⌊x′⌋−−→ ⌊x′⌋. Since f is a
folding, there must be C ∈ Conf (P) such that f(C) = ⌊x′⌋, and thus there is
x ∈ C such that f(x) = x′, as desired.

We next show that properties (1) and (2) hold.

1. We prove the contronominal, namely that if f(x) ⌢ y′ then there is y ∈ P
such that f(y) = y′ and x ⌢ y. Assume that f(x) ⌢ y′. We distinguish
two possibilities:
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• If y′ ≤ f(x) then, by Lemma 4.1(2a), there exists y ≤ x such that
f(y) = y′. Hence x ⌢ y, as desired.

• Assume that, instead, ¬(y′ ≤ f(x)). Therefore, if we let C ′ =
⌊f(x)⌋ ∪ ⌊y′⌋ and X ′ = C ′ \ ⌊f(x)⌋

⌊f(x)⌋ X′

−−→ C ′ (3)

By Lemma 4.1(2), we have that f(⌊x⌋) = ⌊f(x)⌋. Therefore, since f

is a folding, there must be a transition ⌊x⌋ X−→ C with f(C) = C ′.
This means that there exists y ∈ C such that f(y) ∈ C ′ and, since
x ∈ C, necessarily x ⌢ y, as desired.

2. Assume that ⌢W , for all w ∈ W w ⌢∃ {x, y} and f(x) = f(y). Define
C = ⌊W ⌋ ∈ Conf (P). We distinguish two cases.

• If x ∈ C then we can simply take z = x, since clearly ⌢(W ∪ {x}).
• Assume now that x /∈ C. Clearly f(x) /∈ f(C). Moreover,
⌢(f(C) ∪ {f(x)}). In fact, by Lemma 4.1(3), if for some u ∈ C
it were f(u)#f(x) = f(y) there would exist w ∈ W such that
f(w)#f(x) = f(y). Hence we would have w#x and w#y, contra-
dicting the assumption w ⌢∃ {x, y}.

Therefore f(C)
X′

−−→ f(C) ∪ ⌊f(x)⌋ with X ′ = f⌊f(x)⌋ \ f(C). Since

f is a folding, this implies that C
X−→ D with f(D) = f(C) ∪ ⌊f(x)⌋

and D ≃ f(C) ∪ ⌊f(x)⌋. Therefore there exists z ∈ D such that
f(z) = f(x). Since W ⊆ D, we have that ⌢(W ∪ {z}), as desired.

For the converse implication, assume that f is a surjective morphisms
satisfying conditions (1) and (2). We have to prove that it is a folding.

Let C1 ∈ Conf (P) and assume that f(C1)
x′

−→ C ′
2. If C1 = ∅, take any

x ∈ P such that f(x) = x′, which exists by surjectivity. By Lemma 4.1(2b)
we have f(⌊x⌋) = ⌊x′⌋ = {x′}, and thus ⌊x⌋ = {x}. This means that

C1 = ∅ x−→ {x}, and we conclude.
Otherwise, if C1 ̸= ∅, first observe that for all y ∈ C1 since f(y) ⌢ x′,
by condition (1), there exists some element xy ∈ P such that xy ⌢ y and
f(xy) = x. Note that necessarily ¬(xy ≤ y), otherwise, by Lemma 4.1(2b)
we would have x′ = f(xy) ≤ f(y), which is not the case.
Since C1 is finite and consistent, an inductive argument based on condi-
tion (2), allows us to derive the existence of x such that f(x) = x′ and
⌢(C1 ∪ {x}). Moreover, as argued above for the xy’s, it is not the case
that x ≤ y for some y ∈ C1. Therefore there is a transition

C1
X−→ C1 ∪ ⌊x⌋

where X = ⌊x⌋ \ C1.
We argue that X = {x} and thus we conclude. In fact, assume that there
is some z ∈ X \ {x}. Since f is a morphism f(z) ≤ f(x) = x′. Now, since
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there is the transition f(C1)
x′

−→, all causes of x′ must be in f(C1). Note
that, since f is a morphism, by Lemma 4.1(2), we have ⌊x′⌋ = ⌊f(x)⌋ =
f(⌊x⌋). Therefore, there must exist z1 ∈ C1 such that f(z1) = f(z).
However, since z, z1 ∈ C1∪(⌊x⌋\{x}) which is a configuration in Conf (P),
and f is injective on configurations, we get z = z1 ∈ C1, contradicting the
hypothesis.

The notion of folding on pess turns out to be closely related to that of
abstraction homomorphism for pess introduced in [29] for similar purposes.
More precisely, abstraction homomorphisms can be characterised as those pes
morphisms additionally satisfying condition (1) of Theorem 4.2, while they do
not necessarily satisfy condition (2). Their more liberal definition is explained
by the fact that they are designed to work on a subclass of structured pess (see
Appendix B for a detailed discussion).

We finally show what the conditions characterising foldings look like when
transferred to equivalences.

Corollary 4.3 (folding equivalences for pess). Let P be a pes and let ≡ be an
equivalence on P. Then ≡ is a folding equivalence in FEq(P) iff for all x, y ∈ P,
x ̸= y, if x ≡ y then

1. λ(x) = λ(y);

2. [⌊x⌋]≡ = [⌊y⌋]≡;
3. x#y.

Moreover, for all x, y ∈ P, W ⊆ P

4. if x#∀[y]≡ then [x]≡#
∀[y]≡;

5. if ⌢W and for all w ∈ W , w ⌢∃ [x]≡ then there exists z ∈ [x]≡ such that
⌢(W ∪ {z}).

Proof. Let P be a pess and let ≡ be a folding equivalence. This means that there
exists a folding f : P → P′ such that ≡ and ≡f coincide. By Lemma 3.4 we know
that P/≡f

is isomorphic to P′. Therefore using Lemma 4.1 and Theorem 4.2 we

immediately get the validity of properties (1)-(4). Concerning property (5), we
show that, more generally, if ∼ W , {x1, . . . , xn} ⊆ [x]≡ and for all w ∈ W
w ⌢∃ {x1, . . . , xn} then there is z ∈ [x]≡ such that ⌢ (W ∪ {z}). The proof is
by induction on n.

• if n ≤ 2, we conclude by hypothesis.

• if n > 2, let us split W = W ′ ∪W ′′ in a way that for all w′ ∈ W ′ w′ ⌢ x1

and for all w′′ ∈ W ′′ w′ ⌢∃ {x2, . . . , xn}. By inductive hypothesis, there
is z′′ ∈ [x]≡ such that ⌢ (W ′′ ∪ {z′′}). Therefore we have that for all
w ∈ W = W ′ ∪ W ′′ w ⌢∃ {x1, z

′′}. Now by hypothesis, we deduce
the existence of z such that f(x1) = f(z) (hence z ∈ [x]≡) such that
⌢ (W ∪ {z}), as desired.
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Conversely, assume that ≡ satisfies properties (1)-(5) above. Define a pes
P′ as follows.

• E′ = E/≡;

• [x]≡ ≤′ [y]≡ if [x]≡ ≤∃ [y]≡;

• [x]≡#
′[y]≡ if [x]≡#

∀[y]≡

• λ′([x]≡) = λ(x).

Observe that P′ is a well-defined pes. A simple key observation is that

[x]≡ ≤′ [y]≡ ≤′ [z]≡ ⇒ ∃x′ ∈ [x]≡. y
′ ∈ [y]≡. z

′ ∈ [z]≡. x ≤ y ≤ z (4)

In fact, since [y]≡ ≤′ [z]≡, by definition we have the existence of y′ ∈ [y]≡ and
z′ ∈ [z]≡ such that y′ ≤ z′. Moreover, since [x]≡ ≤′ [y]≡, by definition we have
the existence of x′′ ∈ [x]≡ and y′′ ∈ [y]≡ such that x′′ ≤ y′′. Since y′ ≡ y′′, by
condition (2), [y′]≡ = [y′′]≡. Hence from x′′ ≤ y′′ we deduce the existence of
x′ ≤ y′ with x′ ∈ [x]≡ as desired.

Using (4), we can immediately inherit the partial order properties of ≤′ and
irreflexivity and hereditarity of #′ from the analogous properties of #.

If we define a function f : P → P′ as f(x) = [x]≡, it is now easy to show that
it satisfies properties (1)-(3) in Lemma 4.1, and (1),(2) in Theorem 4.2, hence
it is a folding and we conclude.

For instance, in Fig. 2, consider the equivalence ≡01 over P0 such that
a1 ≡01 a2. This produces P1 as quotient. This is not a folding equivalence since
condition (4) fails: a1#

∀[b2]≡01
, but ¬(a2#b2) and thus ¬([a1]≡01

#∀[b2]≡01
). In-

stead, the equivalence ≡02 over P0 such that a1 ≡02 a2 and b1 ≡02 b2, producing
P2 as quotient, satisfies all five conditions.

When pess are finite, the result above suggests a possible way of identifying
foldings: one can pair candidate events to be folded on the basis of conditions
(1)-(3) and then try to extend the sets with condition (4)-(5) when possible.
The procedure can be inefficient due to the global flavor of the conditions. This
will be further discussed in the conclusions.

We know from Proposition 3.6 that all event structures admit a “maximally
folded” version. We next observe that the same result holds in the class of pess,
i.e., that for each pes there is a uniquely determined minimal quotient.

Theorem 4.4 (joining foldings on pes’s). Let P,P′,P′′ be pess and let f ′ :
P → P′, f ′′ : P → P′′ be foldings. Define E′′′ along with g′ : P′ → E′′′ and
g′′ : P′′ → E′′′ as in Proposition 3.6. Then E′′′ is a pes. Therefore, any pes
admits a unique minimal quotient which is a pes.

Proof. The fact that Pr(g′) : P′ → P(E′′′) and P(g′′) : P′′ → P(E′′′) are foldings
derive from Proposition 3.14. Now observe that, since In order to show that
this actually provide a pushout in PES, consider two morphisms g′1 and g′2 as
in the diagram below, such that g′1 ◦ f ′ = g′′1 ◦ f ′′:
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P

P′ P′′

E′′′

P(E′′′)

f ′ f ′′

g′

P(g′)

g′′

P(g′′)
hϕE′′′

Since E′′′ is a pushout and P(g′)◦f ′ = P(g′′)◦f ′′, there is a unique morphism
h : E′′′ → P(E′′′), making the diagram commute. Now, observe that ϕE′′′ ◦ h :
E′′′ → E′′′ can be used in the diagram below as mediating morphisms:

P

P′ P′′

E′′′

E′′′

f ′ f ′′

g′

P(g′)

g′′

P(g′′)
idE′′′ ϕE′′′◦h

Now, since also the identity works as mediating morphisms we deduce that
h ◦ ϕE′′′ = idE′′′ , which implies that ϕE′′′ is injective. Since it is a folding, it is
also surjective, and therefore it is an isomorphism, as desired.

Remark 7. Theorem 4.4 can be also obtained as a consequence of the fact that
the subcategory PESf is a coreflective subcategory of ESf and thus it is closed
under pushouts as proved in [37, Corollary 1].

4.2. Folding Asymmetric Event Structures

We know that foldings on all poset event structures arise from foldings on the
corresponding canonical pess. Still, for theoretical purposes and for efficiency
reasons, a direct approach, not requiring the generation of the associated pes,
can be of interest. Here we discuss the case of asymmetric event structures. This
generalises the results in [27] that identify conditions which are only sufficient
and apply to a subclass of foldings (the so-called called elementary foldings,
merging a single set of events). Note also that, despite the fact that in this
paper we work in a slightly different framework, we continue to have that, as
observed in [27], aess (and also fess) do not admit a unique minimal quotient
in general.

We first characterise morphisms in the sense of Definition 3.1 on aess.

31



Lemma 4.5 (aes morphisms). Let A and A′ be aess and let f : A → A′ be a
function on the underlying sets of events. Then f is a morphism if and only if
for all x, y ∈ A, x ̸= y

1. λ(f(x)) = λ(x);

2. ⌊f(x)⌋ ⊆ f(⌊x⌋);
3. (a) if f(x) ↗ f(y) then x ↗ y and (b) if x ↗ y and ¬(y ↗ x) then

f(x) ↗ f(y);

4. if f(x) = f(y) then x ↗ y.

Proof. Let f : A → A′ be a morphism. Just observe that pess have global
precedence (see Definition C.1) and x ↷ y iff x ↗ y. Condition (1) is obviously
true. Property (2) follows by observing that, for all x ∈ A, since ⌊x⌋ ∈ Conf (A)
and f is a morphism, then f(⌊x⌋) ∈ Conf (A). Since configurations are causally
closed we deduce that ⌊f(x)⌋ ⊆ f(⌊x⌋). The validity of properties (3) and (4)
is given directly by items (2) and (3) of Lemma C.2.

Conversely, assume that f : A → A′ enjoys properties (1)-(4). Let C ∈
Conf (A) be a configuration. Function f is injective on C since, otherwise, if
there are x, y ∈ C such that f(x) = f(y) and x ̸= y, we would get x ↗ y ↗ x,
contradicting acyclicity of ↗ in C. Observe that f(C) is a configuration. In
fact, ↗ is acyclic in f(C) since C is and, by (3a), cycles are reflected by f . In
addition, f(C) is causally closed by (2), since C is. Finally, note that C ≃ f(C).
In fact, for all x, y ∈ C, if x ↗ y, since ¬(y ↗ x), by (3b), we get f(x) ↗ f(y).
Conversely, if f(x) ↗ f(y) then x ↗ y, by (3a).

These are the standard conditions characterising (total) aes morphisms
(see [6]), with the addition of (3b), needed in order to ensure that configurations
are mapped to isomorphic configurations.

Proposition 4.6 (aes foldings). Let A and A′ be aess and let f : A → A′

be a morphism. Then f is a folding if and only if it is surjective and for all
X,Y ⊆ A, x, y ∈ A with x /∈ X, y /∈ Y , y′ ∈ A′

1. if f−1(y′) ↗∀ x then y′ ↗∃ f(⌊x⌋);
2. if ¬(x ↗∃ X), ¬(y ↗∃ Y ), ⌢(X ∪ Y ) and f(x) = f(y) then there exists

z ∈ A such that f(z) = f(x) and ¬(z ↗∃ X ∪ Y ).

3. given H ∈ Hist(x), if ¬(H ↗∃ X), and H1 Ĺ H such that f(H1) ∪
{f(x)} ∈ Hist(f(x)) there exists x1 such that H1 ∪ {x1} ∈ Hist(x1) and
¬(x1 ↗∃ X).

Proof. Let f : A → A′ be a folding. Surjectivity of f can be proved exactly as
in Theorem 4.2. We show that properties (1)-(3) hold.

1. We prove the contronominal, namely that if ¬(y′ ↗∃ f(⌊x⌋)) then there
is y ∈ A such that f(y) = y′ and ¬(y ↗ x). Let H = ⌊x⌋ ∈ Conf (A)
and assume that ¬(y′ ↗∃ f(H)). Since f is a morphism H ′ = f(H) ∈
Hist(f(x)). Observe that we can safely assume that y′ ̸∈ H ′. In fact,
otherwise, since ¬(y′ ↗∃ H ′), the only possibility would be y′ = f(x) and
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thus we could take y = x since ¬(x ↗ x), as desired. Using the fact that
¬(y′ ↗∃ H ′) and y /∈ H ′, if we let C ′ = H ′ ∪ ⌊y′⌋ and Y ′ = C ′ \H ′

H ′ Y ′

−→ C ′ (5)

Therefore, since f is a folding, there must be a transition H
X−→ C with

f(C) = C ′. This means that there exists y ∈ X such that f(y) = y′ and
since H = ⌊x⌋, necessarily ¬(y ↗ x), as desired.

2. Assume that x /∈ X, y /∈ Y ¬(x ↗∃ X), ¬(y ↗∃ Y ), ⌢(X ∪ Y ) and
f(x) = f(y). Define C = ⌊X ∪ Y ⌋ ∈ Conf (A). We show that x ̸∈ C. In
fact, x /∈ ⌊X⌋ since x /∈ X and ¬(x ↗∃ X), and, for analogous reasons,
y /∈ ⌊Y ⌋. Now, if x = y we are done. Otherwise, we can prove that
x ̸∈ ⌊Y ⌋ and conclude. In fact, assume by contradiction that x ∈ ⌊Y ⌋,
i.e., x ≤ w for some w ∈ Y . Since f(x) = f(y) and x ̸= y, we deduce, by
Lemma 4.5(4), that y ↗ x. Recalling x ≤ w, by inheritance of asymmetric
conflict, we get y ↗∃ Y , contradicting the hypotheses.
Since x /∈ C, we have f(x) /∈ f(C). Moreover, if we let y′ = f(x) = f(y),
we have ¬(y′ ↗∃ f(C)). Otherwise, by Lemma 4.5(3a), we would deduce
x ↗∃ X or y ↗∃ Y , contradicting the hypotheses.

Therefore f(C)
X′

−−→ f(C) ∪ ⌊f(x)⌋ with X ′ = f⌊f(x)⌋ \ f(C). Since f

is a folding, this implies that C
X−→ D with f(D) = f(C) ∪ ⌊f(x)⌋ and

D ≃ f(C) ∪ ⌊f(x)⌋. Therefore there exists z ∈ D such that f(z) = f(x).
Therefore ¬(z ↗∃ C). Hence, recalling C = ⌊X⌋ ∪ ⌊Y ⌋, we have ¬(z ↗∃

X ∪ Y ), as desired.

3. Take H ∈ Hist(x) with ¬(H ↗∃ X) and H1 Ĺ H such that f(H1) ∪
{f(x)} ∈ Hist(f(x)), hence f(H1)

f(x)−−−→ f(H1) ∪ {f(x)}. Consider C =
H1 ∪ ⌊X⌋. Since H1 ∪ {x} ⊆ H and ¬(H ↗∃ X), we have ¬(H1 ∪
{x} ↗∃ ⌊X⌋) and thus, by Lemma 4.5(3a), ¬(f(H1 ∪ {x}) ↗∃ f(⌊X⌋).
Therefore f(H1∪⌊X⌋) = f(H1)∪f(⌊X⌋) f(x)−−−→ C ′

1, and since f is a folding

H1∪⌊X⌋ x1−→ C1, with f(x1) = f(x) and clearly (given that the transition
exists, x1 ↗∃ X, as desired.

For the converse implication, assume that f is a surjective morphism satis-
fying conditions (1)-(3). We have to prove that it is a folding.

Let C1 ∈ Conf (A) and assume that f(C1)
x′

−→ C ′
2. When C1 = ∅ we argue

as in Theorem 4.2. Otherwise, if C1 ̸= ∅, for all y ∈ C1 it holds ⌊y⌋ ⊆ C1 and
thus ¬(x′ ↗∃ f(⌊y⌋). Thus, by condition (1), there exists some element xy ∈ A
such that f(xy) = x′ and ¬(xy ↗ y). Note that necessarily xy ̸= y,

Since C1 is finite and consistent, an inductive argument based on condition
(2), allows us to derive the existence of x such that f(x) = x′ and ¬(x ↗∃ C1).
Therefore there is a transition

C1
X−→ C2
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a c0 b

c1 c2

a b

c01 c2

a b

c1 c02

a b

c012

A0 A1 A2 A3

Figure 8: Asymmetric event structures do not admit a minimal quotient

where C2 = C1 ∪ ⌊x⌋ and X = ⌊x⌋ \ C1.
Let H = C2[x]. By definition of history, if ¬(H ↗∃ C2 \ H). Let H ′

1 =
f(C1)[x

′] \ {x′} and let H1 its f -counterimage in C1. We have H1 ⊑ H, x′ =
f(x) /∈ f(H1) and f(H1) ∪ {f(x)} ∈ Hist(f(x)). Then, by condition (3), there
exists x1 such that H1 ∪{x1} ∈ Hist(x1) and ¬(x1 ↗∃ C2 \H), hence ¬(x1 ↗∃

C1 \H1). This implies C1
x1−→ C1 ∪ {x1}, as desired.

We already observed that working in the class of aess we can obtain smaller
quotients than in the class of pess (see, e.g., the hhp-bisimilar structures P2 in
Fig. 2 and A0 in Fig. 4). However, unsurprisingly, the folding criteria for aess
are less elegant and more complex than those for pess. For a practical use, the
reference to histories could cause a loss of efficiency. Moreover, the uniqueness
of the minimal quotient is lost. Consider for instance the aess in Fig. 8. It can
be seen that h01 : A0 → A1 is a folding where the events c1, caused by a and c0
in conflict with a, are merged in a single event c01 in asymmetric conflict with
a. Similarly, h02 : A0 → A2 is a folding obtained by merging c0 and c2. These
are two minimal foldings that do not admit a join in the class of aess. In fact,
if we merge all three c-labelled events we obtain A3, and it is easy to see that
the function h03 : A0 → A3 is not a folding. In fact, consider {a, b} ∈ Conf (A0).

Then h03({a, b}) = {a, b} c012−−→, a transition that cannot be simulated in A0.
Indeed, it can be seen that the join of h01 and h02 is the event structure E in
Fig. 1(right), which cannot be represented as an aes.

In passing, we note that also in the class of fess and bess the existence
of minimal foldings is lost. In fact, consider the fess in Fig. 5 (which can be
also viewed as bess). It can be easily seen that F1 and F2 are different minimal
foldings of F0. In particular, merging the three d-labelled events as in F3 modifies
the behaviour. In fact, in F3, the event d012 is not enabled in C = {a} since
c ≺ d012 and no event in C is in conflict with c. Instead, in F0, the event d0 is
clearly enabled from {a}.

Existence of a unique minimal folding could be possibly recovered by
strengthening the notion of folding and, in particular, by requiring that foldings
preserve and reflect histories. Note, however, that this would be against the
spirit of our work where the notion of folding is not a choice. Rather, after
having assumed hhp-bisimilarity as the reference behavioural equivalence, the
notion of folding is essentially “determined” as a quotient (surjective function)
that preserves the behaviour up to hhp-bisimilarity.
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5. Conclusions

We studied the problem of minimisation for poset event structures, a class
that encompasses many stable event structure models in the literature, assuming
hereditary history-preserving bisimilarity as the reference behavioural equiva-
lence. We showed that a uniquely determined minimal quotient always exists for
poset event structures and also in the subclass of prime event structures, while
this is not the case for various models extending prime event structures. We
showed that foldings between general poset event structures arise from foldings
of corresponding canonical prime event structures. Finally, we provided a char-
acterisation of foldings of prime event structures, and discussed how this could
be generalised to other classes, developing explicitly the case of asymmetric
event structures.

We believe that, besides its original motivations from the setting of busi-
ness process models and its foundational interest, this work can be of help in
the study of minimisation, under a true concurrent equivalence, of operational
models which can be mapped to event structures, like transition systems with
independence or Petri nets.

As underlined throughout the paper, our theory of folding has many connec-
tions with the literature on event structures. The idea of “unfolding” more ex-
pressive models to prime algebraic domains and prime event structures has been
studied by many authors (e.g., in [28, 3, 31, 32, 7]). The same can be said for the
idea of refining a single action into a complex computation (see, e.g., [24] and
references therein). Instead, the problem of characterising behaviour-preserving
quotients of event structures has received less attention. We already commented
on the relation with the notion of abstraction homomorphisms for pess [29],
which captures the idea of behaviour preserving abstraction in a subclass of
structured pess. In some cases, given a Petri net or an event structure a special
transition system can be extracted, on which minimisation is performed. In
particular, in [38] the authors propose an encoding of safe Petri nets into causal
automata, in a way that preserves hp-bisimilarity. The causal automata can be
transformed into a standard labelled transition system, which in turn can be
minimised. However, in this way, the correspondence with the original events is
lost.

The notion of behaviour preserving function has been given an elegant ab-
stract characterisation in terms of open maps [25]. In the paper we mentioned
the possibility, discussed in detail in Appendix A, of viewing our foldings as open
maps and we observed that various results admit a categorical interpretation.
This gives clear indications of the possibility of providing a general abstract view
of the results in this paper, something which represents an interesting topic of
future research.

The characterisation of foldings on prime (and asymmetric) event structures
can be used as a basis to develop, at least in the case of finite structures,
an algorithm for the definition of behaviour preserving quotients. The fact
that conditions for folding refer to sets of events might make the minimisation
procedure very inefficient. Determining suitable heuristics for the identification
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Figure 9: Two pess involved in the absorption law

of folding sets and investigating the possibility of having more “local” conditions
characterising foldings are interesting directions of future development.

Although not explicitly discussed in the paper, considering elementary fold-
ings, i.e., foldings that just merge a single set of events, one can indeed determine
some more efficient folding rules. This is essentially what is done for aess and
fess in [27]. However, restricting to elementary foldings is limitative, since it
can be seen that general foldings cannot be always decomposed in terms of el-
ementary ones (e.g., it can be seen that in Fig. 2, the folding f02 : P0 → P2

cannot be obtained as the composition of elementary foldings).
When dealing with possibly infinite event structures one could work on some

finitary representation and try to devise reduction rules acting on the represen-
tation and inducing foldings on the corresponding event structure. Observe that
working, e.g., on finite safe Petri nets, the minimisation procedure would be nec-
essarily incomplete, given that hhp-bisimilarity is known to be undecidable [39].

A natural question concerns the possibility of extending the results in this
paper to concurrent behavioural equivalences weaker than hereditary history-
preserving bisimilarity. While reduction techniques of practical interest can be
surely devised, we believe that the results in this paper, eminently the existence
of a unique minimal quotient, can be hardly extended to other behavioural
equivalences. An obvious candidate equivalence would be history-preserving
bisimilarity, but the attempt would fall short. In fact, consider the pess in Fig. 9,
which are known to be history-preserving bisimilar but not hereditary history-
preserving bisimilar [25]. One can easily realise that they are both minimal, i.e.,
no quotient preserves history-preserving bisimilarity. In fact two instances of
both a and b are needed: one excluding and the other allowing for the execution
of c and d, respectively. Technically, an important property that fails is the
analogous of Lemma 3.8 for history-preserving bisimilarity, i.e., the possibility of
viewing a history-preserving bisimilarity as an event structure. For even weaker
notions of behavioural equivalence, like step or pomset bisimulation equivalence
(see, e.g., [24]) the answer is less immediate. However, for equivalences which
do not fully preserve the causal structure of computations it looks very difficult
to be able to get a legal event structure model as a quotient.

In addition, we recall that hereditary history-preserving bisimilarity has been
defined on other general models of concurrency, like configuration structures
and higher-dimensional automata [40, 41]. Understanding whether the results
in this paper can be generalised also to these settings is an interesting direction

36



of future research.

A. Foldings as Open Maps

Here we observe that foldings, as defined in the paper, arise as open maps
in the sense of [25]. We start by recalling the notion of open map.

Definition A.1 (open map). Let M be a category and let C be a subcategory
of M. A morphism f : M → M ′ is C-open if for all morphisms e : C → C ′ and
commuting square

C E

C ′ E′

c

e f

c′

c′′

there exists a morphism c′′ : C ′ → E such that the two triangles commute.

Let Pom denote the subcategory of ES having conflict-free pess as objects
and injective morphisms as arrows. Then we can show that foldings are Pom-
open morphisms in ES, generalising to our setting a result proved for prime
event structures in [25].

Lemma A.1 (foldings as open maps). Let E, E′ be event structures and let
f : E → E′ be a morphism. Then f is a folding if and only if f is Pom-open.

Proof. Let f be a folding. In order to prove that f is a Pom-open map, assume
to have a commuting square as in Definition A.1. Since C is a conflict-free
prime event structures, its set of events, ordered by causality, which abusing
the notation, we still denote by C is a configuration. Since c is a morphism
c(C) ∈ Conf (E) and c(C) ≃ C, and thus f(c(C)) ∈ Conf (E′) and f(c(C)) ≃ C.
Similarly, c′(C ′) ∈ Conf (E′) and c′(C ′) ≃ C ′. Finally observe that e(C) ⊑ C ′.

Thus c′(e(C)) = f(c(C)) ⊑ c′(C ′), meaning that f(c(C))
X′

−−→ c′(C ′) for a

suitable X ′. By definition of folding, there must be a transition c(C)
X−→ D

such that f(D) = c′(C ′). Therefore, we can define c′′ : C ′ → E as follows: for
all x′ ∈ C ′, let c′′(x′) be the unique y ∈ D such that f(y) = c′(x′).

Conversely, assume that f is anPom-open map. We show that f satisfies the

condition of Lemma 3.3. Let C1 ∈ Conf (E) and consider a transition f(C1)
x′

−→
C ′

2. If we view configurations C1, C
′
2 as pomsets, then we can build the following

commuting square

C1 E

C ′
2 E′

f|C1
f

c′′

By the fact that f is open, we get the morphism c′′, and it is immediate to see
that C1

x−→ c′′(C ′
2) is the desired transition that completes the proof.
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The above characterisation of foldings as Pom-open maps and the fact that
PES is a coreflective subcategory of ES (Lemma 3.13) can be exploited to
derive some results in the paper. More precisely, Proposition 3.14 arises as an
instance of [25, Lemma 6(iii)] and Lemma 3.12 of [25, Lemma 6(ii)].

B. Relating Foldings and Abstraction homorphisms

Abstraction homomorphisms have been introduced in [29] as a way of cap-
turing behaviour preserving quotients of event structures. As mentioned in the
main text, the mentioned work focuses on a subclass of “well-structured” event
structures which can be obtained from the empty event structure by action-
prefixing, non-deterministic choice + and parallel composition |. This allows
the author to have a more liberal notion of quotient. More precisely, we next
show that abstraction homomorphisms can be characterised as those pes mor-
phisms additionally satisying condition (1) of Theorem 4.2, while they do not
necessarily satisfy condition (2).

In order to recall the notion of abstraction homomorphism, it is worth in-
troducing some notation. Given a pes P and an event x ∈ P let us define
⌊x) = ⌊x⌋ \ {x}, ⌈x⌉ = {y | y ∈ P ∧ x < y}, and conc(x) = {y | y ∈ P ∧ ¬(x ≤
y ∨ y ≤ x ∨ x#y)}.

Definition B.1 (abstraction homomorphisms [29]). Let P, P′ be pess. An
abstraction morphism is a function f : P → P′ such that for all x, y ∈ P

1. λ′(f(x)) = λ(x);

2. f(⌊x)) = ⌊f(x));
3. f(⌈x⌉) = ⌈f(x)⌉;
4. f(conc(x)) = conc(f(x))

Lemma B.1 (foldings vs abstraction homomorphisms). Let P, P′ be pes and
let f : P → P′ be a function. Then f is an abstraction morphism iff f is a pes
morphism additionally satisying condition (1) of Theorem 4.2.

Proof. Let f be an abstraction homomorphism. We first prove conditions (1)-(3)
of Lemma 4.1. The first condition is already in Definition B.1. Condition (2),
is immediately implied by Definition B.1(2) Concerning condition (3), let x, y ∈
P such that f(x) = f(y) and x ̸= y. Observe that we cannot have x < y,
otherwise by Definition B.1(2), we would have f(x) < f(y). Dually, it cannot
be y < x. Moreover, it cannot be x ∈ conc(y), otherwise Definition B.1(4)
would be violated. Therefore, necessarily x#y. The validity of condition (3b)
is proved analogously.

We finally show that f satisfies also condition (1) of Theorem 4.2. Let x ∈ P,
y ∈ P′ such that ¬(f(x)#y′) and we show that ¬(x#y) for some y ∈ P such
that f(y) = y′. We distinguish various possibilities:

• If f(x) = y′, we simply take y = x.
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• If y′ < f(x), by Definition B.1(2) there exists y ∈ P with y < x such that
f(y) = y′, and we conclude.

• If f(x) < y′, by Definition B.1(3) there exists y ∈ P with x < y such that
f(y) = y′, and we conclude.

• If none of the above holds, necessarily y′ ∈ conc(f(x))x, and thus by
Definition B.1(4) there exists y ∈ P with y ∈ conc(x) such that f(y) = y′,
and we conclude.

Conversely, let f be a pes morphism additionally satisying condition (1)
of Theorem 4.2. We prove that conditions (1)-(4) of Definition B.1 hold. As
above, the first condition is already in Lemma 4.1. The second condition, namely
f(⌊x)) = ⌊f(x)) immediately follows from Lemma 4.1(2), i.e, f(⌊x⌋) = ⌊f(x)⌋.
In fact, we only need to observe that for all y < x, f(y) ̸= f(x), otherwise, by
Lemma 4.1(3a) we would have x#y.

Concerning (3), i.e., for x ∈ P, f(⌈x⌉) = ⌈f(x)⌉ let us prove separately the
two inclusions.

• (⊆) Let y′ ∈ f(⌈x⌉), i.e., y′ = f(y) for some y ∈ ⌈x⌉. Since x < y, by
Lemma 4.1(2b), f(x) < f(y) and thus y′ = f(y) ∈ ⌈f(x)⌉ , as desired.

• (⊇) Let y′ ∈ ⌈f(x)⌉, i.e., f(x) < y′. Then, for all y ∈ f−1(y′), since
f(x) < y′ = f(y), by Lemma 4.1(2a), there is z < y such that f(z) = f(x).
Hence either z = x and thus x < y or z ̸= x, hence, by Lemma 4.1(3a),
x#z and thus x#y.

It cannot be that x#∀f−1(y′) , otherwise, by Theorem 4.2(1), we would
have x#y, which is not the case. Therefore there must exists y ∈ f−1(y′)
such that x < y. Therefore y′ = f(y) ∈ f(⌈x⌉).

Let us finally prove condition (4), i.e., for x ∈ P, f(conc(x)) = conc(f(x)).
Again, we prove separately the two inclusions.

• (⊆) Let y′ ∈ f(conc(x)), i.e., y′ = f(y) for some y ∈ conc(x). By
Lemma 4.1(2b) and Lemma 4.1(3b), it must be y′ = f(y) ∈ conc(f(x)),
as desired.

• (⊇) Let y′ ∈ conc(f(x)). Since ¬(f(x)#y′), by Theorem 4.2(1), we deduce
that ¬(x#∀f−1(y′)). Take any y ∈ f−1(y′) such that ¬(x#y). Now
observe that it cannot be x < y or y < x, otherwise, by Lemma 4.1(2b)
f(x) and y′ = f(y) would be ordered in the same way, contradicting
y′ ∈ conc(f(x)). It cannot be x = y either, otherwise y′ = f(y) = f(x),
again contradicting y′ ∈ conc(f(x)).

Therefore, y ∈ conc(x) and thus y′ = f(y) ∈ f(conc(x)), as desired.
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Figure B.10: Abstraction homomorphisms vs folding morphisms.

For instance, consider the pess P7 and P8 in Fig. B.10. It can be seen
that the obvious function f78 : P7 → P8 is an abstraction homomorphism
but not a folding. Indeed, consider the configuration {b0, a1}. Then the step

f78({b0, a1})
c01−−→ {b01, a01, c01} cannot be simulated by {b0, a1}.

One can see that the pess P7 and P8 are not in the subclass of well-structured
pess generated by the language considered in [29]. In fact none of the available
operators can be used as the top operator: action-prefixing would produce a pes
with a causally minimal event, while + or | would produce a pes whose events
can partitioned into two blocks pairwise in conflict or concurrent, respectively.

C. Some Properties of Morphisms and Foldings

Here we define some relations between the events of an event structure, based
on the way in which such events occur in configurations. They are used to prove
general properties of morphisms and foldings of event structures, that then can
be instantiated on specific subclasses.

Definition C.1 (precedence). Let E be an event structure. The precedence as
the relation ↷⊆ E × E, defined for x, y ∈ E by x ↷ y if for all C ∈ Conf (E)
such that x, y ∈ C it holds x <C y. We say that E has global precedence if for
x, y ∈ E, if x, y ∈ C and x <C y then x ↷ y.

In words, x ↷ y whenever in each computation where x, y occur necessarily
x occurs before y. The precedence relation is useful also to define a notion of se-
mantic conflict. Observe that for any configuration C the precedences expressed
by ↷ are always respected by ≤C , i,.e., ↷∗

C⊆≤C . When the event structure
has global precedence, the precedence relation is sufficient to completely char-
acterise the local order of configuration, i.e., for all configurations C it holds
that <C= (↷|C)

∗.
Closely connected, we can introduce a notion of semantic conflict.

Definition C.2 (conflict). Let E be an event structure. The conflict is relation
# ⊆ 2E , defined for a finite X ⊆ E by #X if there is no C ∈ Conf (E) such
that X ⊆ C. When {x, y} we often write x#y.

We observe that conflict and precedence are strictly related. In particular,
binary conflict can be characterised in terms of precedence.

Proposition C.1 (precedence vs conflict). Let E be an event structure. Then
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• for X ⊆ E, if ↷|X is cyclic then #X.

• for x, y ∈ E, we have x#y iff x ≺ y ≺ x.

Proof. • Let X ⊆ E. If ↷|X is cyclic, i.e., there are x1, . . . , xn ∈ X such
that x1 ↷ x2 ↷ . . . xn ↷ x1 then the events x1, . . . , xn and thus X
can never occur together in the same computation, i.e., there cannot be
C ∈ Conf (E) such that X ⊆ C. In fact, otherwise, we should have
↷∗

|C⊆≤C , contradicting the fact that ≤C is a partial order. In words,
each of the events xi should occur before the others, which is impossible.

• In particular, if x#y then x, y can never be in the same computation,
hence trivially x ≺ y and y ≺ x, and observe that also the converse holds.

Morphism on event structures can be shown to enjoy interesting properties
with respect to the semantic relations.

Lemma C.2 (morphism properties). Let E,E′ be event structures and let f :
E → E′ be a morphism. Then for all x, y ∈ E

1. if f(x) ↷ f(y) then x ↷ y;

2. if f(x) = f(y) then x ↷ y, hence by duality x#y.

Moreover, if E, E′ have global precedence, then

3. if x ↷ y and ¬(y ↷ x) then f(x) ↷ f(y);

Proof. Let x, y ∈ E

1. Assume f(x) ↷ f(y). Let C ∈ Conf (E) be a configuration such that
x, y ∈ C. Then f(x), f(y) ∈ f(C) and C ∈ Conf (E′). Since f(x) ↷ f(y)
we have that f(x) <f(C) f(y) and thus, since f is a morphism, x <C y.
Since this holds for any configuration, we conclude x ↷ y.

2. Assume f(x) = f(y). Since f is injective on configurations, there cannot
be C ∈ Conf (E) such that x, y ∈ C. Therefore, trivially x ↷ y (and
y ↷ x, whence x#y).

3. If E, E′ have global precedence, f is a folding and x ↷ y and ¬(y ↷ x)
then ¬(x#y) and thus there is some configuration C ∈ Conf (E) such that
x, y ∈ C. Since E has global precedence, x ≤C y. Now f(x), f(y) ∈ f(C)
which is in Conf (E′). Therefore f(x) ≤f(C) f(y). Again, since E′ has
global precedence, f(x) ↷ f(y), as desired.
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