
An Institutional Approach to
Communicating UML State Machines

Tobias Rosenberger1,2, Alexander Knapp3(�) , and
Markus Roggenbach1

1 Swansea University, Swansea, U.K.
{t.rosenberger.971978, m.roggenbach}@swansea.ac.uk

2 VERIMAG, Université Grenoble Alpes, Grenoble, France
3 Universität Augsburg, Augsburg, Germany
knapp@informatik.uni-augsburg.de

Abstract Wepresent a new approach on how to provide institution-based semantics
for communicating UML state machines in form of a hybrid modal logicM↓

D .
A theoroidal comorphism mapsM↓

D into the Casl institution. This allows for
symbolic reasoning on communicating UML state machines.

1 Introduction

In line with a long-standing line of research [5,6,15,4], we set out on a general programme
to bring together multi-view system specification with UML diagrams and heterogeneous
specification and verification based on institution theory, giving the different system
views both a joint semantics and richer tool support. Institutions, a formal notion of
a logic, are a principled way of creating such joint semantics. They make moderate
assumptions about the data constituting a logic, give uniform notions of well-behaved
translations between logics and, given a graph of such translations, automatically give
rise to a joint institution.

UML state machines are an object-based variant of Harel statecharts. Within the
UML, state machines are a central means to specify system behaviour. In previous work
[16], an institutional semantics for UML state machines was provided that allowed for
symbolic reasoning. Such symbolic reasoning can be of advantage as, in principle, it
allows to verify properties of UML state machines with large or infinite state spaces.
Here, we extend this work in order to cater for communication.

A typical scenario for such communication is the interaction between a User, an
ATM, and a Bank in order to authenticate the User as legitimate owner of a bank card by
checking an entered PIN. Figure 1 depicts a UML modelling for this scenario. In brief,
the system consists of the ATM and the Bank, where we consider User interaction as an
external communication. The scenario begins with the User entering a bank card and a
PIN. The ATM requests their verification by the Bank. The Bank checks validity of the
card/PIN combination and communicates the result to the ATM. We model the validity
check as internal, non-deterministic choice made by the Bank. In case of a positive result,
the ATM will return the card to the User. In case of a negative result, the User is given a

http://orcid.org/0000-0002-4050-3249
http://orcid.org/0000-0002-3819-2787

2 T. Rosenberger, A. Knapp, M. Roggenbach

Figure 1. UML diagrams for the ATM example (implicit completion events omitted): Composite
structure diagram: top; state machine: left ATM, right Bank.

second and third chance to enter a correct PIN. After the third verification failure, the
ATM will keep the card. A typical question on this model is whether the ATM will consider
the verification successful only if the Bank has already come to the same conclusion. To
answer such questions, one needs to take into account the behaviour of all state machines
involved as well as how they can communicate via the ports and connectors as specified
by a composite structure diagram.

Closest to our approach are the works [6,4]. Both these papers address the topic
of communicating state machines, however, both fail to provide institutions of state
machines as reported in [15,16]. Learning from the reason for this shortcoming, rather
than capturing UML state machines directly as an institution, [16] builds up a new
logic in which UML state machines can be embedded. Here, we extend this logic for
communication. In particular, we treat UML event pools as part of composite structure
diagrams rather than of state machines. State machines are seen as a completely open
system, which is (partially) closed by ‘wiring up’ in a communication structure. Overall,
this leads to a separation of concerns: event pools and transitions can be analysed
independently.

A number of authors give formal semantics to communicating state machines, however
with a purpose different from symbolic analysis of UML. The Object Management Group
provides an executable semantics of UMLComposite Structures [14]. Their objective is to
provide an interpreter for the executable subset fUML of the UML. Dragomir [12] define
transformations from composite structure diagrams to communicating extended timed
automata for the purpose of simulation, static analysis and model-checking. Mazzanti et
al. [8] provide a UML model checker that also covers composite structure diagrams. A
quite comprehensive formal semantics has been provided by Liu et al. [7], again with the
main purpose of supporting model checking.

In Section 2, we recall the notion of an institution and sketch the CFOL= institution
of Casl, which we use for specifying data. In Section 3, we extend the hybrid modal
logicM↓D [16] to cater also for output by adding the notion of messages (in [16] with
input only). For structures and formulae this requires us to introduce relativisations with

An Institutional Approach to Communicating UML State Machines 3

regards to a set of outputs. We show that the extended logicM↓D is an institution, can
be embedded into Casl via a theoroidal comorphism, and allows for “borrowing” of
Casl theorem proving support. In Section 4, we show how to embed simple UML state
machines with output into the extended logicM↓D. In Section 5, we provide an institution
for simple UML composite structures by enriching our extended logicM↓D with elements
capturing connectors and event queues. Again, “borrowing” of Casl theorem proving
support is possible. Finally, in Section 6, we demonstrate that our approach allows for
automated theorem proving.

2 Background on Institutions and Casl

Institutions are an abstract formalisation of the notion of logical systems combining
signatures, structures, sentences, and satisfaction under the slogan “truth is invariant under
change of notation” [3]. Institutions can be related in different ways by institution (forward)
(co-)morphisms, where a so-called theoroidal institution comorphism covers a particular
case of encoding a “poorer” logic into a “richer” one. The algebraic specification
language Casl [11] uses an institution of first-order logic at its basic specification
level, where mainly signature items and axiom sentences are listed. On its structured
specifications level, Casl offers institution-independent combination mechanisms to
build larger specifications in a hierarchical and modular fashion. We use Casl’s basic
institution CFOL= of first-order logic with equality and sort generation constraints [9]
and construct a theoroidal institution comorphism from our hybrid modal logic institution
M↓D to CFOL=.

2.1 Institutions and Theoroidal Institution Comorphisms

An institution I = (SI ,StrI ,SenI , |=I) consists of (i) a category of signatures SI ;
(ii) a contravariant structures functor StrI : (SI)op → Cat, where Cat is the category
of (small) categories; (iii) a sentence functor SenI : SI → Set, where Set is the category
of sets; and (iv) a family of satisfaction relations |=IΣ ⊆ |Str

I(Σ)| × SenI(Σ) indexed
over Σ ∈ |SI |, such that the following satisfaction condition holds for all σ : Σ → Σ′ in
SI , ϕ ∈ SenI(Σ), andM ′ ∈ |StrI(Σ′)|:

StrI(σ)(M ′) |=IΣ ϕ ⇐⇒ M ′ |=IΣ′ Sen
I(σ)(ϕ) .

StrI(σ) is called the reduct functor, SenI(σ) the translation function.
A theory presentation T = (Σ,Φ) in the institution I consists of a signature

Σ ∈ |SI |, also denoted by Sig(T), and a set of sentences Φ ⊆ SenI(Σ). Its model
classModI(T) is the class {M ∈ StrI(Σ) |M |=IΣ ϕ f. a. ϕ ∈ Φ} of theΣ-structures
satisfying the sentences in Φ. A theory presentation morphism σ : (Σ,Φ) → (Σ′, Φ′)
is given by a signature morphism σ : Σ → Σ′ such thatM ′ |=IΣ′ Sen

I(σ)(ϕ) for all
ϕ ∈ Φ andM ′ ∈ ModI(Σ′, Φ′). Theory presentations in I and their morphisms form
the category PresI .

A theoroidal institution comorphism ν = (νSig , νMod, νSen) : I → I ′ consists
of a functor νSig : SI → PresI

′
inducing the functor νS = νSig ;Sig : SI → SI′ on

4 T. Rosenberger, A. Knapp, M. Roggenbach

signatures, a natural transformation νMod : (νSig)
op
;ModI

′
→̇ StrI on models and

structures, and a natural transformation νSen : SenI →̇ νS; SenI
′
on sentences, such that

for allΣ ∈ |SI |,M ′ ∈ |ModI
′
(νSig(Σ))|, and ϕ ∈ SenI(Σ) the following satisfaction

condition holds:

νMod
Σ (M ′) |=IΣ ϕ ⇐⇒ M ′ |=I

′

νS(Σ) ν
Sen(Σ)(ϕ) .

A theory presentation (Σ,Φ) over the institution I is translated via a theoroidal institution
comorphism ν : I → I ′ into the theory presentation νPres(Σ,Φ) = (Σν , Φν ∪ νSenΣ (Φ))
over I ′ where νSig(Σ) = (Σν , Φν) and νSenΣ (Φ) = {νSenΣ (ϕ) | ϕ ∈ Φ}.

2.2 Casl and the Institution CFOL=

At the level of basic Casl specifications, CFOL= offers declarations of sorts, operations,
and predicates with given argument and result sorts. Formally, this defines a many-sorted
signatureΣ = (S, F, P)with a setS of sorts, aS∗×S-sorted familiesF = (Fw,s)w s∈S+

of total function symbols, and family P = (Pw)w∈S∗ of predicate symbols. Using these
symbols, one may then write axioms in first-order logic with equality. Moreover, one can
specify data types, each given by a list of data constructors and, optionally, selectors.
Data types may be declared to be generated or free. Generatedness amounts to an implicit
higher-order induction axiom and intuitively states that all elements of the data types are
reachable by constructor terms (“no junk”); freeness additionally requires that all these
constructor terms are distinct (“no confusion”). Basic Casl specifications denote the
class of all algebras which fulfil the declared axioms, i.e., Casl has loose semantics. More
formally, for CFOL= a many-sorted Σ-structureM consists of a non-empty carrier set
sM for each s ∈ S, a total function fM : wM → sM for each function symbol f ∈ Fw,s
and a predicate pM for each predicate symbol p ∈ Pw. A many-sorted Σ-sentence is a
closed many-sorted first-order formula over Σ or a sort generation constraint.

3 The Hybrid Modal LogicM↓
D for Event/Data Systems

The logicM↓D is a hybrid modal logic for specifying and reasoning about event/data-
based reactive systems. The modal part of the logic allows to handle transitions between
system configurations where the modalities describe guarded configuration moves based
on input and output events with arguments, i.e., messages, and the corresponding effects
on data. The hybrid part of the logic allows to bind control states of system configurations
and to jump to configurations with such control states explicitly.M↓D with its signatures,
sentences, and structures forms an institution. Furthermore,M↓D can be translated into
Casl via a theoroidal institution comorphism.

We extend the logic and the comorphism of [16] by including output. Amodal formula
〈|i : φ([O]N : ψ|〉% now says that in the current configuration an input message according
to i can be accepted if precondition state predicate φ holds and that, in response, output
messages according to [O]N and satisfying the transition predicate ψ can be produced
such that % holds afterwards. The messages frame [O]N tells that besides outputs from
O also additional messages according to N can be sent. This relativisation allowsM↓D

An Institutional Approach to Communicating UML State Machines 5

to specify the “cone of messages above O” in a finite and, in particular, institution-
compatible way that also is extensible into a theoroidal institution comorphism from
M↓D to Casl. We furthermore demonstrate that for pureM↓D-invariants the comorphism
leads to simpler Casl proof obligations that are easier to automate in theorem proving.

For the inclusion of data inM↓D, we assume given a consistent, monomorphic Casl
specification Dt . The interpretation of the sorts S(Dt) of Dt represents the different
kinds of data, like the integers or lists of integers. Requiring Dt to be monomorphic
fixes these carrier sets as there is, up to isomorphism, a single model D of Dt . We
also use open formulæ F Casl

Sig(Dt),X over sorted variables X = (Xs)s∈S(Dt) and their
satisfaction relation D, β |=Casl

Sig(Dt),X ϕ for a variable valuation β : X → D, i.e.,
β = (βs : Xs → sD)s∈S(Dt).

3.1 Data States and Transitions

A data signature A consists of a finite set of attributes |A| and a sorting s(A) : |A| →
S(Dt). A data signature morphism from a data signature A to a data signature A′ is a
function α : |A| → |A′| such that s(A)(a) = s(A′)(α(a)) for all a ∈ |A|. We sometimes
identify A with the S(Dt)-sorted family (s(A)−1(s))s∈S(Dt).

A data state ω for a data signature A is given by an attribute valuation ω : A→ D,
i.e., ω(a) ∈ s(A)(a)D for a ∈ |A|; in particular, Ω(A) = DA is the set of A-data states.
The state predicates FDA,X are the formulæ in F Casl

Sig(Dt),A∪X , taking A as well as an
additional S(Dt)-indexed family X as variables. A state predicate φ ∈ FDA,X is to be
interpreted over an A-data state ω and variable valuation β : X → D and we define the
satisfaction relation |=D by

ω, β |=DA,X φ ⇐⇒ D, ω ∪ β |=Casl
Sig(Dt),A∪X φ .

The α-reduct of an A′-data state ω′ : A′ → D along a data signature morphism
α : A→ A′ is given by the A-data state ω′|α : A→ D with (ω′|α)(a) = ω′(α(a)) for
every a ∈ |A|. The state predicate translation FDα,X : FDA,X → FDA′,X along α : A→
A′ is given by the Casl-formula translationF Casl

Sig(Dt),α∪1X along the substitution α∪1X .
Reduct and translation fulfil the following satisfaction condition due to the general
substitution lemma for Casl:

ω′|α, β |=DA,X φ ⇐⇒ ω′, β |=DA′,X FDα,X(φ) .

A data transition (ω, ω′) for a data signatureA is a pair ofA-data states; in particular,
Ω2(A) = (DA)2 is the set of A-data transitions. It holds that (DA)2 ∼= D2A, where
2A = A]A and we assume that no attribute in A ends in a prime ′ and all attributes in
the second summand are adorned with an additional prime. The transition predicates
F 2D
A,X are the formulæ FD2A,X . The satisfaction relation |=2D for a transition predicate

ψ ∈ F 2D
A,X , data transition (ω, ω′) ∈ Ω2(A), and valuation β : X → D is defined as

(ω, ω′), β |=2D
A,X ψ ⇐⇒ ω + ω′, β |=D2A,X ψ

where ω + ω′ ∈ Ω(2A) with (ω + ω′)(a) = ω(a) and (ω + ω′)(a′) = ω′(a).

6 T. Rosenberger, A. Knapp, M. Roggenbach

The α-reduct of an A′-data transition (ω′, ω′′) along a data signature morphism
α : A→ A′ is given by the A-data transition (ω′, ω′′)|α = (ω′|α, ω′′|α). The transition
predicate translation F 2D

α,X along α is given by FD2α,X with 2α : 2A→ 2A′ defined by
2α(a) = α(a) and 2α(a′) = α(a)′. Like for data states, reduct and translation fulfil the
following satisfaction condition:

(ω′, ω′′)|α, β |=2D
A,X ψ ⇐⇒ (ω′, ω′′), β |=2D

A′,X F 2D
α,X(ψ) .

3.2 Events and Messages

An event signatureE consists of a finite set of events |E| and amap s(E) : |E| → S(Dt)∗

assigning to each e ∈ |E| its list of parameter sorts. An event signature morphism
η : E → E′ is a function η : |E| → |E′| such that s(E)(e) = s(E′)(η(e)) for all
e ∈ |E|. We write e(X) for e ∈ |E| and s(E)(e) = s1, . . . , sn when choosing n different
parametersX = x1, . . . , xn, and also e(X) ∈ E in this case; when f = e(X), we write
X(f) forX and we furthermore lift this notation to sets and lists of events. We sometimes
identify the parameter list X with the S(Dt)-sorted family ({xi | si = s})s∈S(Dt) and
write s(E)(e)(xi) for si.

A message e(β) over an event signature E is given by an event e(X) ∈ E with its
parameters X instantiated by a parameter valuation β : X → D such that β(x) ∈ sD for
s(E)(e)(x) = s; the set of all messages over an event signature E is denoted by Ê(E).
When ê = e(β) ∈ Ê(E), we write β(ê) for β, and when e(X) ∈ E and β : Y → D for
X ⊆ Y , we write e(β) for e(β�X); both notations are furthermore lifted to sets and lists.

The set of shufflings F̂1 ‖ F̂2 of two message lists F̂1 and F̂2 is inductively given by

F̂ ‖ ε = {F̂} = ε ‖ F̂ ,

(f̂ :: F̂1) ‖ F̂2 = {f̂ :: F̂ | F̂ ∈ F̂1 ‖ F̂2} = F̂1 ‖ (f̂ :: F̂2) .

An event signature morphism η : E → E′ is lifted to a message e(β) ∈ Ê(E) by
setting Ê(η)(e(β)) = η(e)(β) ∈ Ê(E′) and also to sets and lists of messages.

3.3 Event/Data Signatures

An event/data signatureΣ consists of input and output event signatures I(Σ) and O(Σ),
and a data signature A(Σ). An event/data signature morphism σ : Σ → Σ′ consists
of an input event signature morphism I(σ) : I(Σ)→ I(Σ′), an output event signature
morphism O(σ) : O(Σ) → O(Σ′), and a data signature morphism A(σ) : A(Σ) →
A(Σ′). We lift the event signatures and signature morphisms to messages by writing
Î(Σ) for Ê(I(Σ)), Ô(Σ) for Ê(O(Σ)), Î(σ) for Ê(I(σ)), and Ô(σ) for Ê(O(σ)).

The category ofM↓D-signatures SM
↓
D consists of the event/data signatures and

signature morphisms.

3.4 Event/Data Structures

A configuration γ = (c, d) consists of a control state c from some set of control states C
and a data state d from some set of data statesD. Given a data signature A the data state

An Institutional Approach to Communicating UML State Machines 7

of γ may be labelled by a map ω such that ω(d) ∈ Ω(A). For a set of configurations Γ
we write C(Γ) for its set of control states.

AΣ-event/data structureM = (Γ,R, Γ0, ω) over an event/data signatureΣ consists
of a set of configurations Γ ⊆ C ×D, a family of transition relations R = (Rı̂,Ô ⊆
Γ × Γ)ı̂∈Î(Σ),Ô∈Ô(Σ)∗ , and a non-empty set of initial configurations Γ0 ⊆ Γ such that
Γ is reachable from Γ0 via R, i.e., for all γ ∈ Γ there are γ0 ∈ Γ0, n ≥ 0, ı̂1, . . . ,
ı̂n ∈ Î(Σ), Ô1, . . . , Ôn ∈ Ô(Σ)∗, and (γk, γk+1) ∈ Rı̂k+1,Ôk+1

for all 0 ≤ k < n with
γn = γ; and a data state labelling ω : D → Ω(A(Σ)).

We write c(M)(γ) = c and ω(M)(γ) = ω(d) for γ = (c, d) ∈ Γ , Γ (M) for Γ ,
C(M) for {c(M)(γ) | γ ∈ Γ (M)}, R(M) for R, Γ0(M) for Γ0, C0(M) for C(Γ0),
and Ω0(M) for {ω(M)(γ0) | γ0 ∈ Γ0}.

The above definition restricts structures to reachable ones only. Although anM↓D-
sentence will hold in an event/data structure if it is satisfied in all its initial states, the
modal and hybrid operators ofM↓D will allow for expressing that a certain property
holds in all (reachable) states of the structure.

Theσ-reduct of aΣ′-event/data structureM ′ along the event/data signaturemorphism
σ : Σ → Σ′ is the Σ-event/data structureM ′|σ such that

– Γ (M ′|σ) ⊆ Γ (M ′) as well as R(M ′|σ) = (R(M ′|σ)ı̂,Ô)ı̂∈Î(Σ),Ô∈Ô(Σ)∗ are in-
ductively defined by Γ0(M

′) ⊆ Γ (M ′|σ) and, for all γ′, γ′′ ∈ Γ (M ′), ı̂ ∈ Î(Σ),
and Ô ∈ Ô(Σ)∗, if γ′ ∈ Γ (M ′|σ) and (γ′, γ′′) ∈ R(M ′)Î(σ)(ı̂),Ô(σ)(Ô), then
γ′′ ∈ Γ (M ′|σ) and (γ′, γ′′) ∈ R(M ′|σ)ı̂,Ô;

– Γ0(M
′|σ) = Γ0(M

′); and
– ω(M ′|σ)(γ′) = (ω(M ′)(γ′))|A(σ) for all γ′ ∈ Γ (M ′|σ).

This σ-reduct keeps exactly those transitions that are a direct image along σ. It would
also be possible to additionally keep transitions that show a super-list of the outputs
that can be reached by σ. When moving toM↓D-sentences, however, it turns out to be
impossible to fix a particular list of outputs.

Given sets of input events J ⊆ I(Σ) and output events N ⊆ O(Σ), we denote by
Γ J,N (M,γ) and Γ J,N (M), respectively, the set of configurations of a Σ-event/data
structureM that are J,N -reachable from a configuration γ ∈ Γ (M) and from an initial
configuration γ0 ∈ Γ0(M), respectively. Here a γn ∈ Γ (M) is J,N -reachable inM
from a γ1 ∈ Γ (M) if there are n ≥ 1, ı̂2, . . . , ı̂n ∈ Î(J), Ô2, . . . , Ôn ∈ Ô(N)∗, and
(γi, γi+1) ∈ R(M)ı̂k+1,Ôk+1

for all 1 ≤ k < n.

TheΣ-event/data structures form the discrete category StrM
↓
D (Σ) ofM↓D-structures

overΣ. For each σ : Σ → Σ′ in SM
↓
D the σ-reduct functor StrM

↓
D (σ) : StrM

↓
D (Σ′)→

StrM
↓
D (Σ) is given by StrM

↓
D (σ)(M ′) =M ′|σ.

3.5 Event/Data Formulæ and Sentences

The Σ-event/data formulæ F
M↓D
Σ,S over an event/data signature Σ and a set of state

variables S are inductively defined by

– ϕ— data state sentence ϕ ∈ FDA(Σ),∅ holds in the current configuration;

8 T. Rosenberger, A. Knapp, M. Roggenbach

– s— the control state of the current configuration is s ∈ S;
– ↓s . %— calling the current control state s, formula % ∈ F

M↓D
Σ,S]{s} holds (s is turned

into a fresh variable by adding to by disjoint union to the set of state variables);
– (@J,Ns)%— in all configurations with control state s ∈ S that are J,N -reachable,
formula % ∈ F

M↓D
Σ,S holds (relativised “jump”);

– 2J,N%— in all configurations that are J,N -reachable from the current configuration
formula % ∈ F

M↓D
Σ,S holds (relativised “globally”);

– 〈i([O]N : ψ〉%— in the current configuration there are valuations β : X(i) → D,
β′ : X(O) → D, and a transition for the incoming message i(β) ∈ Î(Σ) and the
outgoing messages Ô′ ∈ O(β′)‖N̂ forO(β′) ∈ Ô(Σ)∗, N̂ ∈ Ô(N)∗ such that β∪β′

satisfies transition formula ψ ∈ F 2D
A(Σ),X(i)∪X(O) and % ∈ F

M↓D
Σ,S holds afterwards;

– 〈|i : φ([O]N : ψ|〉%— in the current configuration for all valuations β : X(i)→ D
satisfying state formula φ ∈ FDA(Σ),X(i) there are a valuation β

′ : X(O) → D and
a transition for the incoming message i(β) ∈ Î(Σ) and the outgoing messages
Ô′ ∈ O(β′)‖ N̂ forO(β′) ∈ Ô(Σ)∗, N̂ ∈ Ô(N)∗ such that β ∪β′ satisfies transition
formula ψ ∈ F 2D

A(Σ),X(i)∪X(O) and % ∈ F
M↓D
Σ,S holds afterwards;

– ¬%— in the current configuration % ∈ F
M↓D
Σ,S does not hold;

– %1 ∨ %2 — in the current configuration %1 ∈ F
M↓D
Σ,S or %2 ∈ F

M↓D
Σ,S hold.

We write (@s)% for (@I(Σ),O(Σ)s)%, 2% for 2I(Σ),O(Σ)%, [i([O]N : ψ]% for ¬〈i(
[O]N : ψ〉¬%, and true for ↓s . s; we write O for [O]∅.

Two different kinds of relativisations are used inM↓D-formulæ: For the jump operator
(@J,Ns)% and the globally operator 2J,N% the subsets of input events J ⊆ I(Σ) and
output events N ⊆ O(Σ) restrict the referable states in anM↓D-structure to those that
are J,N -reachable. On the other hand, [O]N specifies that besides messages from O
additional messages for events in N ⊆ O(Σ) can be mixed into the output, such that, in
particular, [O]∅ requires exactly O. Since the set of output events is assumed to be finite,
[O]N can be used to specify message lists of arbitrary length with finitely many formulæ.
Moreover, the syntactic information in both kinds of relativisations is kept through a
translation to anotherM↓D-signature.

Let σ : Σ → Σ′ be an event/data signature morphism. The event/data formulæ
translation F

M↓D
σ,S : F

M↓D
Σ,S → F

M↓D
Σ′,S along σ is recursively given by

– F
M↓D
σ,S (ϕ) = FDA(σ),∅(ϕ);

– F
M↓D
σ,S (s) = s;

– F
M↓D
σ,S (↓s . %) = ↓s .FM

↓
D

σ,S]{s}(%);

– F
M↓D
σ,S ((@J,Ns)%) = (@I(σ)(J),O(σ)(N)s)F

M↓D
σ,S (%);

– F
M↓D
σ,S (2J,N%) = 2I(σ)(J),O(σ)(N)F

M↓D
σ,S (%);

– F
M↓D
σ,S (〈i([O]N : ψ〉%) =

〈I(σ)(i)([O(σ)(O)]O(σ)(N) : F 2D
A(σ),X(i)∪X(O)(ψ)〉F

M↓D
σ,S (%);

An Institutional Approach to Communicating UML State Machines 9

– F
M↓D
σ,S (〈|i : φ([O]N : ψ|〉%) =

〈|I(σ)(i) : FDA(σ),X(i)(φ)([O(σ)(O)]O(σ)(N) : F 2D
A(σ),X(i)∪X(O)(ψ)|〉F

M↓D
σ,S (%);

– F
M↓D
σ,S (¬%) = ¬F

M↓D
σ,S (%);

– F
M↓D
σ,S (%1 ∨ %2) = F

M↓D
σ,S (%1) ∨F

M↓D
σ,S (%2).

The set SenM
↓
D (Σ) of Σ-event/data sentences is given by F

M↓D
Σ,∅ , the event/data

sentence translation SenM
↓
D (σ) : SenM

↓
D (Σ)→ SenM

↓
D (Σ′) by F

M↓D
σ,∅ .

3.6 Satisfaction Relation for M↓
D

Let Σ be an event/data signature,M a Σ-event/data structure, S a set of state variables,
v : S → C(M) a state variable assignment, and γ ∈ Γ (M). The satisfaction relation for
event/data formulæ is inductively given by

– M,v, γ |=M
↓
D

Σ,S ϕ iff ω(M)(γ), ∅ |=DA(Σ),∅ ϕ;

– M,v, γ |=M
↓
D

Σ,S s iff v(s) = c(M)(γ);

– M,v, γ |=M
↓
D

Σ,S ↓s . % iffM,v{s 7→ c(M)(γ)}, γ |=M
↓
D

Σ,S]{s} %;

– M,v, γ |=M
↓
D

Σ,S (@J,Ns)% iffM, v, γ′ |=M
↓
D

Σ,S % for allγ′ ∈ Γ J,N (M)with c(M)(γ′) =
v(s);

– M,v, γ |=M
↓
D

Σ,S 2J,N% iffM,v, γ′ |=M
↓
D

Σ,S % for all γ′ ∈ Γ J,N (M,γ);

– M,v, γ |=M
↓
D

Σ,S 〈i([O]N : ψ〉% iff there are valuationsβ : X(i)→ D,β′ : X(O)→ D,
output messages Ô′ ∈ O(β′) ‖ N̂ with N̂ ∈ Ô(N)∗, and a configuration γ′ ∈ Γ (M)
such that (γ, γ′) ∈ R(M)i(β),Ô′ , (ω(M)(γ), ω(M)(γ′)), β∪β′ |=2D

A(Σ),X(i)∪X(O) ψ,

andM, v, γ′ |=M
↓
D

Σ,S %;

– M,v, γ |=M
↓
D

Σ,S 〈|i : φ([O]N : ψ|〉% iff for all valuations β : X(i) → D that satisfy
ω(M)(γ), β |=DA(Σ),X(i) φ there are a valuation β′ : X(O) → D, output messages
Ô′ ∈ O(β′) ‖ N̂ with N̂ ∈ Ô(N)∗, and a configuration γ′ ∈ Γ (M) such that
(γ, γ′) ∈ R(M)i(β),Ô′ , (ω(M)(γ), ω(M)(γ′)), β ∪ β′ |=2D

A(Σ),X(i)∪X(O) ψ, and

M,v, γ′ |=M
↓
D

Σ,S %;

– M,v, γ |=M
↓
D

Σ,S ¬% iffM,v, γ 6|=M
↓
D

Σ,S %;

– M,v, γ |=M
↓
D

Σ,S %1 ∨ %2 iffM, v, γ |=M
↓
D

Σ,S %1 orM,v, γ |=M
↓
D

Σ,S %2.

For a Σ ∈ |SM
↓
D |, an M ∈ |StrM

↓
D (Σ)|, and a ρ ∈ SenM

↓
D (Σ) the satisfaction

relationM |=M
↓
D

Σ ρ holds if, and only if,M, ∅, γ0 |=
M↓D
Σ,∅ ρ for all γ0 ∈ Γ0(M).

Theorem 1. (SM
↓
D ,StrM

↓
D ,SenM

↓
D , |=M

↓
D) is an institution.

10 T. Rosenberger, A. Knapp, M. Roggenbach

from Basic/StructuredDatatypes get List, Set % import finite lists and sets
spec TransΣ = Dt
then free type InEvt ::= I(Σ)

free type OutEvt ::= O(Σ)
then List[sort OutEvt] and Set[sort InEvt] and Set[sort OutEvt]
then sort Ctrl

free type Conf ::= conf(c : Ctrl;A(Σ))
preds init : Conf;

trans : Conf × InEvt× List [OutEvt]× Conf
·∃g : Conf · init(g) % there is some initial configuration

then free { pred reachable : Set [InEvt]× Set [OutEvt]× Conf × Conf
∀g, g′, g′′ : Conf; J : Set [InEvt];N : Set [OutEvt]; i : InEvt;O : List [OutEvt]
· reachable(J,N, g, g)
· reachable(J,N, g, g′) ∧ i ∈ J ∧O ⊆ N ∧ trans(g′, i, O, g′′)⇒

reachable(J,N, g, g′′) }
then preds reachable(J : Set [InEvt], N : Set [OutEvt], g : Conf)⇔

∃g0 : Conf · init(g0) ∧ reachable(J,N, g0, g);
reachable(g : Conf)⇔ reachable(I(Σ), O(Σ), g)

then pred mixed : List [OutEvt]× Set [OutEvt]× List [OutEvt]
∀o, o′ : OutEvt;O,O′ : List [OutEvt];N : Set [OutEvt]
· mixed(O,N,O)
· mixed(o ::O,N, o ::O′) if mixed(O,N,O′)
· mixed(O,N, o′ ::O′) if mixed(O,N,O′) ∧ o′ ∈ N

end

Figure 2. Frame for translatingM↓
D into Casl.

3.7 A Theoroidal Comorphism from M↓
D to Casl

We define a theoroidal comorphism fromM↓D to Casl. The construction mainly follows
the standard translation of modal logics to first-order logic [1] and extends the scheme
of [16] by outputs.

The basis is a representation ofM↓D-signatures and the frame given byM↓D-structures
as a Casl-specification as shown in Fig. 2. The signature translation

νSig : SM
↓
D → PresCasl

maps anM↓D-signature Σ to the Casl-theory presentation given by TransΣ and an
M↓D-signature morphism to the corresponding theory presentation morphism. TransΣ
first of all covers the events according to I(Σ) and O(Σ) with types InEvt and OutEvt,
and the configurations with type Conf showing a single constructor conf for the control
state from Ctrl and a data state given by assignments to the attributes from A(Σ).
Furthermore, TransΣ sets the frame for describing reachable transition systems with a
set of initial configurations, a transition relation, and reachability predicates, where the
specification of reachable uses Casl’s “structured free” construct to ensure reachability
to be inductively defined. Finally, a predicate mixed is included for representing the
shufflings of a list of outputs with some additional output events.

An Institutional Approach to Communicating UML State Machines 11

The model translation

νMod
Σ : ModCasl(νSig(Σ))→ StrM

↓
D (Σ)

then can rely on this encoding. In particular, for a model M ′ ∈ ModCasl(νSig(Σ)),
there are bijective maps ιM ′,Conf : Conf

M ′ ∼= CtrlM
′
×Ω(A(Σ)) for the configurations

as well as ιM ′,InEvt : InEvt
M ′ ∼= Î(Σ) and ιM ′,OutEvt : OutEvtM

′ ∼= Ô(Σ) for the
messages. Moreover,mixedM

′
(ι−1M ′,OutEvt(Ô), ι−1M ′,OutEvt(N), ι−1M ′,OutEvt(Ô

′)) if, and
only if, Ô′ ∈ Ô ‖ N̂ ′ with N̂ ′ ∈ N∗. TheM↓D-structure resulting from a Casl-model
M ′ of TransΣ can thus be defined by

– Γ (νMod
Σ (M ′)) = ι−1M ′,Conf({gM

′ ∈ ConfM
′
| reachableM

′
(gM

′
)})

– R(νMod
Σ (M ′))ı̂,Ô = {(γ, γ′) ∈ Γ (νMod

Σ (M ′))× Γ (νMod
Σ (M ′)) |

transM
′
(ιM ′,Conf(γ), ι

−1
M ′,InEvt(̂ı), ι

−1
M ′,OutEvt(Ô), ιM ′,Conf(γ

′))}
– Γ0(ν

Mod
Σ (M ′)) = {γ ∈ Γ (νMod

Σ (M ′)) | initM
′
(ιM ′,Conf(γ))})

– ω(νMod
Σ (M ′)) = {(c, ω) ∈ Γ (νMod

Σ (M ′)) 7→ ω}

ForM↓D-sentences, we first define a formula translation

νF
Σ,S,g : F

M↓D
Σ,S → F Casl

νS(Σ),S∪{g}

which, mimicking the standard translation, takes a variable g : Conf as a parameter
that records the “current configuration” and also uses a set S of state names for the
control states. The translation embeds the data state and 2-data state formulæ using the
substitution A(Σ)(g) = {a 7→ a(g) | a ∈ A(Σ)} for replacing the attributes a ∈ A(Σ)

by the accessors a(g). The translation ofM↓D-formulæ then reads

– νF
Σ,S,g(ϕ) = F Casl

νS(Σ),A(Σ)(g)
(ϕ)

– νF
Σ,S,g(s) = (s = c(g))

– νF
Σ,S,g(↓s . %) = ∃s : Ctrl . s = c(g) ∧ νF

Σ,S]{s},g(%)

– νF
Σ,S,g((@

J,Ns)%) = ∀g′ : Conf . (c(g′) = s ∧ reachable(J,N, g′))⇒ νF
Σ,S,g′(%)

– νF
Σ,S,g(2

J,N%) = ∀g′ : Conf . reachable(J,N, g, g′)⇒ νF
Σ,S,g′(%)

– νF
Σ,S,g(〈i([O]N : ψ〉%) = ∃X : s(I(Σ))(i);X ′ : s(O(Σ))(O);

O′ : List [OutEvt]; g′ : Conf .
mixed(O(X ′), N,O′) ∧ trans(g, i(X), O′, g′) ∧
F Casl
νS(Σ),A(Σ)(g)∪A(Σ)(g′)∪1X∪X′

(ψ) ∧ νF
Σ,S,g′(%)

– νF
Σ,S,g(〈|i : φ([O]N : ψ|〉%) = ∀X : s(I(Σ))(i) .F Casl

νS(Σ),A(Σ)(g)∪1X (φ)⇒
∃X ′ : s(O(Σ))(O);O′ : List [OutEvt]; g′ : Conf .
mixed(O(X ′), N,O′) ∧ trans(g, i(X), O′, g′) ∧
F Casl
νS(Σ),A(Σ)(g)∪A(Σ)(g′)∪1X∪X′

(ψ) ∧ νF
Σ,S,g′(%)

– νF
Σ,S,g(¬%) = ¬νF

Σ,S,g(%)

– νF
Σ,S,g(%1 ∨ %2) = νF

Σ,S,g(%1) ∨ νF
Σ,S,g(%2)

Building on the translation of formulæ, the sentence translation

νSenΣ : SenM
↓
D (Σ)→ SenCasl(νS(Σ))

only has to require additionally that evaluation starts in an initial state:

12 T. Rosenberger, A. Knapp, M. Roggenbach

– νSenΣ (ρ) = ∀g : Conf . init(g)⇒ νF
Σ,∅,g(ρ)

Theorem 2. (νSig , νMod, νSen) is a theoroidal comorphism fromM↓D to Casl.

For a Casl-proof of anM↓D-invariant 2ϕ such that ϕ has to hold in every reachable
configuration, the full generality of the reachable predicate can sometimes be avoided
by replacing the proof obligation ∀g : Conf . reachable(g) ⇒ F Casl

νS(Σ),A(Σ)(g)
(ϕ) by

the usual stepwise induction scheme that only requires to demonstrate the invariant to
hold in all initial configurations and that it is preserved by every transition. Moreover,
theM↓D-state formula ϕ can be generalised into a Casl-invariant.

Proposition 1. Let (Σ,P) be a theory presentation inM↓D and (νS(Σ), Φ) a theory
presentation in Casl such that ModCasl(νPres(Σ,P)) ⊆ ModCasl(νS(Σ), Φ). Let
invCasl(g) ∈ F Casl

νS(Σ),{g} be a Casl-formula with a single free variable g and invM
↓
D ∈

FDA(Σ),∅ anM
↓
D-state formula, such that

∀g : Conf . invCasl(g)⇒ F Casl
νS(Σ),A(Σ)(g)(inv

M↓D)(I0)

∀g : Conf . init(g)⇒ invCasl(g)(I1)
∀g, g′ : Conf; i ∈ InEvt;O ∈ List [OutEvt] .

invCasl(g) ∧ trans(g, i, O, g′)⇒ invCasl(g′)

(I2)

hold in every modelM ′ ∈ ModCasl(νS(Σ), Φ). Then νMod
Σ (M ′) |=M

↓
D

Σ 2invM
↓
D for

all modelsM ′ ∈ ModCasl(νPres(Σ,P)).

4 Simple UML State Machines with Outputs

UML state machines [13, Ch. 14] provide means to specify the reactive behaviour of
objects or component instances. These entities hold an internal data state, typically given
by a set of attributes or properties as specified in a static structure, and shall react to event
occurrences like incoming messages by firing different transitions in different control
states. Such transitions may have a guard depending on event arguments and the internal
state and may change, as an effect, the internal control and data state of the entity as
well as send out messages on their own. Beyond such “simple” means for specifying
reactive entities, UML state machines offer also more advanced modelling constructs,
like hierarchical states or compound transitions, which, however, we defer to future work.

In our formal account, extending again [16], a simple UML state machine with
outputs U uses an event/data signature Σ(U) for its input and output events as well as
its attributes and consists of a finite set of control states C(U); a finite set of transition
specifications T (U) of the form (c, φ, i(X), o1(X1), . . . , om(Xm), ψ, c′) with

– source and target control states c, c′ ∈ C(U),
– input event i(X) ∈ I(Σ(U)) and output events o1(X1), . . . , om(Xm) ∈ O(Σ(U))

such that X ∩
⋃

1≤k≤mXm = ∅,
– precondition state predicate φ ∈ FDA(Σ(U)),X , and

An Institutional Approach to Communicating UML State Machines 13

– postcondition transition predicate ψ ∈ F 2D
A(Σ(U)),X∪

⋃
1≤k≤mXk

;

an initial control state c0(U) ∈ C(U); and an initial state predicateϕ0(U) ∈ FDA(Σ(U)),∅,
such that C(U) is syntactically reachable, i.e., for every c ∈ C(U) \ {c0(U)} there are
(c0(U), φ1, i1, O1, ψ1, c1), . . . , (cn−1, in, On, ψn, cn) ∈ T (U) with n > 0 and cn = c.
The constraint of syntactic reachability is only introduced to simplify semantic and
algorithmic constructions on simple UML state machines with output.

A Σ(U)-event/data structureM is a model of a simple UML state machine U with
output, M ∈ ModM

↓
D (U), if C(U) ⊆ C(M) up to a bijective renaming, C0(M) =

{c0(U)},Ω0(M) ⊆ {ω ∈ |Ω(A(Σ(U)))| | ω |=DA(Σ(U)),∅ ϕ0(U)}, and if the following
holds for all (c, d) ∈ Γ (M):

– for all transition specifications (c, φ, i, O, ψ, c′) ∈ T (U) and β : X(i) → D with
ω(M)(d), β |=DA(Σ(U)),X(i) φ, there is a β

′ : X(O)→ D and a pair ((c, d), (c′, d′)) ∈
R(M)i(β),O(β′) such that (ω(M)(d), ω(M)(d′)), β ∪ β′ |=2D

A(Σ(U)),X(i)∪X(O) ψ;
– for all pairs ((c, d), (c′, d′)) ∈ R(M)i(β),O(β′) there is some transition specification
(c, φ, i, O, ψ, c′) ∈ T (U) such thatω(M)(d), β |=DA(Σ(U)),X(i) φ and also (ω(M)(d),

ω(M)(d′)), β ∪ β′ |=2D
A(Σ(U)),X({i}∪O) ψ.

The last requirement that all transitions in a model are due to transition specifications
does not cover the requirement of input enabledness for UML state machines: An event
for which currently no transition can fire is discarded. This behaviour can be added by
a syntactical transformation extending the set of transition specifications by self-loops
with empty outputs for all situations where some event is not accepted.

In UML, completion events are produced whenever a state completes its internal
behaviour and such events have always to be prioritised in event processing; the reaction
to a completion event is indicated by a transition without a triggering event. For the
simple machines with output described here, where states do not show internal behaviour,
the only use of completion events is to let a machine make progress autonomously
without external input. For using this feature, the machine’s event/data signature has to
be extended by such events and the transition specifications have to take completions
into account. Still, the prioritisation cannot be covered by a single state machine alone,
as it has no event processing discipline of its own.

Extending the characterisation algorithm in [16] with outputs, it can be shown that
M↓D is expressive enough to capture the model class of a simple UML state machine
with output U by a single sentence %U such that M ∈ ModM

↓
D (U) if, and only if,

M |=M
↓
D

Σ(U) %U . The simplest case is a single transition specification (c, φ, i, O, ψ, c′):
By requiring (@c)〈|i : φ(O : ψ|〉c′ it can be ensured that a model indeed shows a
transition from control state c to the control state c′ for the input event i with precondition
φ satisfied which outputs O with ψ satisfied. For requiring that such a transition for
input i and output O is only offered when the precondition φ and the transition condition
ψ hold, a formula (@c)[i(O : ¬φ ∨ ¬ψ]false has to be added. For ensuring that no
other output than O can be produced, on the one hand (@c)[i(O′ : true]false for
every O′ 6= O that is at most the length of O has to be added and on the other hand
(@c)[i([O′]O(Σ) : true]false for every O′ with length one more than O.

14 T. Rosenberger, A. Knapp, M. Roggenbach

Reasoning over a simple UML state machine with outputU inCasl via the translation
of U ’s characterising sentence along the theoroidal comorphism of Thm. 2 will involve
some not fully transpicuous axioms due to the necessary exclusion of some behaviour using
formulæ like (@c)[i([O′]O(Σ) : true]false. It is therefore sometimes advantageous to
directly use the requirements forM being a model of U to obtain another characterisation
of the trans predicate in the Casl presentation for the comorphism, which then can be
favourably combined with Prop. 1 for proving invariants:

Proposition 2. Let U be a simple UML state machine with output and let M ′ ∈
ModCasl(νSig(Σ(U))) such that νMod

Σ(U)(M
′) ∈ ModM

↓
D (U). Then

M ′ |=Casl
νS(Σ) ∀g : Conf . reachable(g)⇒(
∀g′ : Conf; i∗ : InEvt;O∗ : List [OutEvt] . trans(g, i∗, O∗, g

′) ⇐⇒∨
(c,φ,i,O,ψ,c′)∈T (U) ∃X : s(I(Σ))(i);X ′ : s(O(Σ))(O) .

c(g) = c ∧F Casl
νS(Σ),A(Σ)(g)∪1X (φ) ∧ i∗ = i(X) ∧O∗ = O(X ′) ∧

F Casl
νS(Σ),A(Σ)(g)∪A(Σ)(g′)∪1X∪X′

(ψ) ∧ c(g′) = c′
)
.

5 Simple UML Composite Structures

A UML composite structure [13, Ch. 11] specifies the internal structure of a class or
component and its collaborations. For our purposes, a composite structure is given
by class or component instances, its so-called parts, that can communicate through
their attached ports specifying provided and required interfaces and being linked by
connectors. All connectors are assumed to be binary and each part to be equipped with a
state machine for describing its behaviour.

A composite structure signature ∆ overM↓D consists of a set Cmp(∆) of parts
c each equipped with anM↓D-signature Σ(∆, c) for its input and output events and
internal attributes; a set Prt(∆) of ports p each showing a part cmp(∆)(p) ∈ Cmp(∆)

as well as an M↓D-signature Σ(∆, p) without attributes (i.e., A(Σ(∆, p)) = ∅) for
its provided (input) and required (output) events; and a symmetric binary relation
Con(∆) ⊆ Prt(∆)× Prt(∆) of connectors such that

– for each part c ∈ Cmp(∆), the input and output events of Σ(∆, c) are the provided
and required events of c’s ports prefixed with the port name, i.e., for F ∈ {I,O},
F (Σ(∆, c)) =

⋃
p∈cmp(∆)−1(c){p.f | f ∈ F (Σ(∆, p))};

– for each part c ∈ Cmp(∆), the attributes of Σ(∆, c) are all prefixed with c, i.e., if
a ∈ A(Σ(∆, c)), then a = c.a∗;

– for each connection (p, p′) ∈ Con(∆), the required events of port p are provided by
p′, i.e., O(Σ(∆, p)) ⊆ I(Σ(∆, p′)).

We say that port p ∈ Prt(∆) is open in ∆ if there is no p′ ∈ Prt(∆) such that
(p, p′) ∈ Con(∆); otherwise p is connected.

An Institutional Approach to Communicating UML State Machines 15

A composite structure signature morphism δ : ∆ → ∆′ over M↓D consists of
a function Cmp(δ) : Cmp(∆) → Cmp(∆′) mapping parts, together with an M↓D-
signature morphism Σ(δ, c) : Σ(∆, c)→ Σ(∆′,Cmp(δ)(c)) for each c ∈ Cmp(Σ); a
function Prt(δ) : Prt(∆)→ Prt(∆′) mapping ports, together with anM↓D-signature
morphism Prt(δ)(p) : Σ(∆, p)→ Σ(∆′,Prt(δ)(p)), preserving

– the part owning each port p, i.e., Cmp(δ)(cmp(∆)(p)) = cmp(∆′)(Prt(δ)(p));
– the connections, i.e., if (p, p′) ∈ Con(∆), then (Prt(δ)(p),Prt(δ)(p′)) ∈ Con(∆′).

The category of cs(M↓D)-signatures Scs(M↓D) consists of the composite structure signa-
tures and signature morphisms overM↓D.

For an cs(M↓D)-signature ∆, a ∆-composite structure structure (sic!) overM↓D is a
family C ∈ (C (c) ∈ |StrM

↓
D (Σ(∆, c))|)c∈Cmp(∆) consisting of anM↓D-structure for

each part c. The δ-reduct C ′|δ of a ∆′-composite structure structure C ′ overM↓D along
a composite structure signature morphism δ : ∆→ ∆′ is computed component-wise as
(C ′(Cmp(δ)(c))|Σ(δ, c))c∈Cmp(∆). The ∆-composite structure structures form the dis-
crete category Str cs(M↓D)(∆) of cs(M↓D)-structures over ∆. For each signature morph-
ism δ : ∆ → ∆′ in Scs(M↓D) the δ-reduct functor Str cs(M↓D)(δ) : Str cs(M↓D)(∆′) →
Str cs(M↓D)(∆) is given by Str cs(M↓D)(δ)(C ′) = C ′|δ.

In UML, state machines organised in a composite structure communicate with each
other by sending messages which are stored in event pools. A state machine draws a
message from its event pool, which is typically implemented as an event queue, and
reacts to this message by firing one of its enabled transitions or by discarding it when no
transition is enabled. This communication scheme is obtained for a∆-composite structure
structure C overM↓D by constructing an overallM↓D-structure over anM

↓
D-signature

that reflects the parts, the ports, and the connections in its events and attributes, but
includes explicit event queues as additional attributes. The overallM↓D-structure over
this queue-basedM↓D-signature then implements the selection of an event from a part’s
event queue, the reactions of this part to this event, and the distribution of the produced
messages to the connected parts.

Formally, we construct a functor Σq : Scs(M↓D) → SM
↓
D on signatures that assigns

to a composite structure signature ∆ the queue-based event/data signature Σq(∆) =⋃
c∈Cmp(∆)(Σ(∆, c) ∪ {qc : Î(Σ(∆, c))∗}) and to a composite structure signature

morphism the canonically corresponding event/data signature morphism. For a composite
structure signature ∆ and a part c ∈ Cmp(∆) there is a natural signature embedding
ηq∆,c : Σ(∆, c)→ Σq(∆).

For a∆-composite structure structure C we construct an overall Σq(∆)-event/data
structure MC as follows: An overall configuration of MC consists, for each part
c ∈ Cmp(∆), of an event queue q(c) ∈ Î(Σ(∆, c))∗ stored in the attribute qc and a part
configuration γ(c) ∈ Γ (C (c)); initially, all parts are in some of their initial configurations
and all event queues are empty. In an overall configuration (q(c), γ(c))c∈Cmp(∆) an
overall transition to another overall configuration (q′(c), γ′(c))c∈Cmp(∆) reacts to
some ı̂ ∈ Î(Σq(∆)) and outputs some Ô ∈ Ô(Σq(∆))∗. This ı̂ can either instantiate
some provided event i ∈ I(Σ(∆, p∗)) of some of the open ports p∗ ∈ Prt(∆) with

16 T. Rosenberger, A. Knapp, M. Roggenbach

c∗ = cmp(∆)(p), or it is the head of the event queue of some c∗ ∈ Cmp(∆) such
that i ∈ I(Σ(∆, c∗)). In the latter case, ı̂ is removed from the event queue of c∗. In
both cases, the reaction of part c∗ is any transition (γ(c∗), γ

′
∗) ∈ R(C (c))ı̂,Ô and

overall γ′ = γ{c∗ 7→ γ′∗}. Finally, all outputs p.ô ∈ Ô such that (p, p′) ∈ Con(∆) and
cmp(∆)(p′) = c′ are appended to the respective event queue of part c′. This defines
a natural transformation Str

cs(M↓D)
q : Str cs(M↓D) →̇ Σq;Str

M↓D with Str
cs(M↓D)
q,∆ (C) =

MC .

Theorem 3. (Scs(M↓D),Str cs(M↓D),Sencs(M↓D), |=cs(M↓D))withSenM
↓
D = Σq; Sen

M↓D

and C |=cs(M↓D)
∆ % if, and only if, Str cs(M↓D)

q,∆ (C) |=M
↓
D

Σq(∆) % is an institution.

cs(M↓D) inherits the event/data formulæ of M↓D and the underlying D, though
extended by queue attributes. In particular, we have for a part c ∈ Cmp(∆) that a
transition sentence 〈|i : φ(O : ψ|〉% (in the current configuration there are valuations
and a transition for the incoming message and the outgoing messages such that these
valuations satisfy transition formula ψ and % holds afterwards) locally formulated for
this part can be faithfully transferred to the global composite structure, abbreviating the
embedding ηq∆,c to η,

〈|η(i) : FDA(η),X(i)(φ) ∧ (hd(qc) = I(η)(i) ∨ open∆,c(I(η)(i)))(
O(η)(O) : F 2D

A(η),X(i)∪X(O)(ψ) ∧∧
a∈A(Σq(∆))\(A(Σ(∆,c))∪{qc|c∈Cmp(∆)}) a = a′ ∧

dist∆,c(I(η)(i), O(η)(O), (qc, q
′
c)c∈Cmp(∆))|〉SenM

↓
D (η)(%) ,

where hd yields the head of a queue, open checks whether the part’s port for the event
is open, the frame condition a = a′ ranges over all attributes not pertaining to c or the
queues, dist removes the input and distributes the outputs to the queues.

6 Verification Example: Communication between User, ATM and
Bank

We applied4 the technique set out in this paper to the example from the introduction
concerning a typical interaction between a User, an ATM component and a Bank
component.

We formalised the state machines for the Bank and the ATM as well as their communic-
ation in Casl. We then set out to show a safety property (by means of a stronger invariant)
on this system by inductive verification, as justified by Prop. 1. We first tried to show
the preservation of said invariant using fully automatic provers connected to Hets [10],
the main tool suite for verification based on Casl and institution theory. However, no
inductive automated provers are currently connected to Hets. Therefore, handling freely
generated datatype would require manual intervention to add suitable induction schemes
— defeating our goal of automation. Instead we utilised the interactive theorem prover

4 Full specifications and proofs accessible at: https://rosento.github.io/2021-paper-composite/

https://rosento.github.io/2021-paper-composite/

An Institutional Approach to Communicating UML State Machines 17

KIV [2]. This prover supports algebraic specifications similar toCasl and offers extensive
heuristics for inductive proofs. KIV’s heuristics fully automatically discharged all proof
obligations in our experiments. The translation of the Casl specifications into KIV is
straightforward.

With our process clarified, we can now state the safety property we will prove:
safe-def: safe(g) ↔ (ctrl(caConf(g)) = Verified→ wasVerified(cbConf(g)) = 1);
used for: s, ls;

The above introduces an axiom safe-def defining the predicate safe and marks the
axiom for use as a simplifier rule (s) and a local simplifier rule (ls) for the KIV system.

The predicate safe ranges over a type of system configurations, each consisting of the
ATM configuration (caConf) and queue, as well as the bank configuration (cbConf) and
queue. The machine configurations in turn consist of the control state and attributes. The
safety predicate holds in a configuration iff should the ATM be in control state Verified,
the bank attribute wasVerified has the value 1.

The behaviours of Bank and ATM are defined in the form of an initial state predicate
and a transition predicate. For space reasons we show only one transition:
atmTrans-def: atmTrans(atmConf(sa1, c1, p1, t1), in, out, atmConf(sa2, c2, p2, t2))

↔ ∃ c : CardId, p : Pin
∨ (sa1 = CardEntered

∧ in = msg(userCom, PIN(p)) ∧ out = (msg(atmCompl, PINEnteredCompl) +l [])
∧ p2 = p ∧ sa2 = PINEntered ∧ c2 = c1 ∧ t2 = t1)

∨ . . .; used for: s, ls;

The ATM transitions from one configuration to another, receiving an input event and
sending out a list of messages. Each ATM configuration consists of (in that order) the
control state, the card id to be verified, the PIN to be verified and the counter for the
number of verification attempts. We give the definition of the transition predicate by a
disjunction of the conditions of all syntactic transitions, including the control state before,
the input event, the output list, variables to be set, the control state after and variables
to remain unchanged. Given these machine predicates and a predicate dist to encode
connectors, we can then define the transition predicate for the overall system:
trans-def: trans(conf(ca1, qa1, cb1, qb1), in, out, conf(ca2, qa2, cb2, qb2))

↔ dist(out, qa1, qa2, qb1, qb2)
∧ ((atmTrans(ca1, in, out, ca2) ∧ cb2 = cb1)

∨ (bankTrans(cb1, in, out, cb2) ∧ ca2 = ca1)); used for: s, ls;

Initially, the queues are empty and the machines are in their initial configurations.
Having thus defined the machines, we turn to verification and define an invariant

strong enough to show both its own preservation and our safety property. The idea is to
control the queues’ status that allows us to enter the Verified state on the ATM or to
reset the wasVerified attribute. In essence the invariant can be syntactically read off
from the composite structure.
invar-def: invar(conf(ca, qa, cb, qb)) ↔ ∃ x.

(ctrl(ca) = Idle ∧ ctrl(cb) = Idle ∧ qa = empty ∧ qb = empty)
∨ (ctrl(ca) = CardEntered ∧ ctrl(cb) = Idle ∧ qa = empty ∧ qb = empty)
∨ (ctrl(ca) = PINEntered ∧ ctrl(cb) = Idle ∧ qa = enq(x, empty) ∧ qb = empty)
∨ (ctrl(ca) = Verifying ∧ ctrl(cb) = Idle ∧ qa = empty ∧ qb = enq(x, empty))
∨ (ctrl(ca) = Verifying ∧ ctrl(cb) = Verifying ∧ qa = empty ∧ qb = enq(x, empty))
∨ (ctrl(ca) = Verifying ∧ ctrl(cb) = VeriSuccess ∧

qa = empty ∧ qb = enq(x, empty) ∧ wasVerified(cb) = 1)

18 T. Rosenberger, A. Knapp, M. Roggenbach

∨ (ctrl(ca) = Verifying ∧ ctrl(cb) = VeriFail ∧ qa = empty ∧ qb = enq(x,empty))
∨ (ctrl(ca) = Verifying ∧ ctrl(cb) = Idle ∧

qa = enq(msg(bankCom, reenterPIN), empty) ∧ qb = empty)
∨ (ctrl(ca) = Verifying ∧ ctrl(cb) = Idle ∧

qa = enq(msg(bankCom, verified), empty) ∧ qb = empty ∧ wasVerified(cb) = 1)
∨ (ctrl(ca) = Verified ∧ ctrl(cb) = Idle ∧

qa = enq(x, empty) ∧ qb = empty ∧ wasVerified(cb) = 1); used for: s, ls;

Note that we can mostly ignore attribute values, as well as all distinctions between
queue elements unrelated to our verification task. We can then formulate lemmas to the
effect that this invariant does in fact imply the safety property, that it is satisfied in any
legal initial configurations and that it is preserved by all transitions. These lemmas are as
follows, again limited to one example for the transitions:

Safe: invar(g) → safe(g);
Init: init(g) → invar(g);
. . .
Trans6: g1 = conf(atmConf(Verifying, c, p, t), qa, cb, qb)

∧ qa 6= empty ∧ top(qa) = msg(atmCom, verified)
∧ g2 = conf(atmConf(Verified, c, p, t),

enq(msg(atmCompl, VerifiedCompl), deq(qa)), cb, qb)
∧ invar(g1) → invar(g2);

Formulating separate lemmas for each transition instead of one lemma using the
transition predicate helps us avoid a combinatorial explosion in the theorem prover.

Providing our specification to KIV with all definitions marked as simplifier rules and
activating the heuristics mode “PL heuristics + structural induction”, each of our lemmas
is proved without noticeable delay, i.e., the verification of the invariant is successful and
does not pose any difficulty to the prover.

7 Conclusion

We have developed two new institutions extending the hybrid modal logicM↓D [16].
One institution caters for simple UML state machines with outputs, an extension of it
captures simple UML composite structure diagrams. Besides providing formal semantics
for communicating UML state machines, via comorphisms these institutions provide a
bridge towards theorem proving for UML. Through an elementary example we could
demonstrate that, thanks to our framework, effective automated theorem proving for
communicating UML state machines is possible.

Future work will be on proof automation. In particular we plan to implement the
translations from UML into extendedM↓D, the institution comorphisms from extended
M↓D to Casl, and possibly the link from Hets to KIV. Yet another important aspect is
to implement analyses of the composite structure and its state machines with a view to
automatically generate lemmas for automated theorem proving. In terms of our general
research programme, the next topic to tackle are UML interactions and how they relate or
refine to UML state machines. Going beyond the UML, it would be interesting to consider
a truly heterogeneous framework, in which composite structure diagrams connect not
only UML state machines, but also components specified in languages such as TLA or
Event-B.

An Institutional Approach to Communicating UML State Machines 19

References
1. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic, Cambridge Tracts in Theoretical

Computer Science, vol. 53. Cambridge University Press (2001)
2. Ernst, G., Pfähler, J., Schellhorn, G., Haneberg, D., Reif, W.: KIV: Overview and VerifyThis

Competition. Intl. J. Softw. Tools Technol. Transfer 17(6), 677–694 (2015)
3. Goguen, J.A., Burstall, R.M.: Institutions: Abstract Model Theory for Specification and

Programming. J. ACM 39, 95–146 (1992)
4. Knapp, A., Mossakowski, T.: UML Interactions Meet State Machines — An Institutional

Approach. In: Bonchi, F., König, B. (eds.) Proc. 7th Intl. Conf. Algebra and Coalgebra in
Computer Science (CALCO 2017). LIPIcs, vol. 72, pp. 15:1–15:15 (2017)

5. Knapp, A., Mossakowski, T., Roggenbach, M.: Towards an Institutional Framework for
Heterogeneous Formal Development in UML — A Position Paper. In: De Nicola, R.,
Hennicker, R. (eds.) Software, Services, and Systems — Essays Dedicated to Martin Wirsing
on the Occasion of His Retirement from the Chair of Programming and Software Engineering,
Lect. Notes Comp. Sci., vol. 8950, pp. 215–230. Springer (2015)

6. Knapp, A.,Mossakowski, T., Roggenbach,M., Glauer,M.: An Institution for Simple UMLState
Machines. In: Egyed, A., Schaefer, I. (eds.) Proc. 18th Intl. Conf. Fundamental Approaches to
Software Engineering (FASE 2015). Lect. Notes Comp. Sci., vol. 9033, pp. 3–18. Springer
(2015)

7. Liu, S., Liu, Y., Étienne André, Choppy, C., Sun, J., Wadhwa, B., Dong, J.S.: A Formal
Semantics for Complete UML State Machines with Communications. In: Johnsen, E.B., Petre,
L. (eds.) Proc. 10th Intl. Conf. Integrated Formal Methods (IFM 2013). Lect. Notes Comp.
Sci., vol. 7940, pp. 331–346. Springer (2013)

8. Mazzanti, F., Ferrari, A., Spagnolo, G.O.: The KandISTI/UMC Online Open-Access Verifica-
tion Framework. ERCIM News 109 (2017)

9. Mossakowski, T.: Relating CASL with Other Specification Languages: The Institution Level.
Theo. Comp. Sci. 286(2), 367–475 (2002)

10. Mossakowski, T., Maeder, C., Lüttich, K.: The Heterogeneous Tool Set. In: Grumberg, O.,
Huth, M. (eds.) Proc. 13th Intl. Conf. Tools and Algorithms for the Construction and Analysis
of Systems (TACAS 2007). Lect. Notes Comp. Sci., vol. 4424, pp. 519–522. Springer (2007)

11. Mosses, P.D.: CASL Reference Manual — The Complete Documentation of the Common
Algebraic Specification Language, Lect. Notes Comp. Sci., vol. 2960. Springer (2004)

12. Ober, I., Dragomir, I.: Unambiguous UML Composite Structures: The OMEGA2 Experience.
In: Cerná, I., Gyimóthy, T., Hromkovic, J., Jeffery, K.G., Královic, R., Vukolic, M., Wolf, S.
(eds.) Proc. 37th Conf. Current Trends in Theory and Practice of Computer Science (SOFSEM
2011), Lect. Notes Comp. Sci., vol. 6543, pp. 418–430. Springer (2011)

13. Object Management Group: Unified Modeling Language. Standard formal/2017-12-05, OMG
(2017), https://www.omg.org/spec/UML/2.5.1

14. Object Management Group: Precise Semantics of UML Composite Structures. Standard
formal/2019-02-01, OMG (2019), https://www.omg.org/spec/PSCS/1.2

15. Rosenberger, T.: Relating UML State Machines and Interactions in an Institutional Framework.
Master’s thesis, Universität Augsburg, Ludwig-Maximilians-Universität München, Technische
Universität München (2017)

16. Rosenberger, T., Bensalem, S., Knapp, A., Roggenbach, M.: Institution-based Encoding and
Verification of Simple UML State Machines in CASL/SPASS. In: Roggenbach, M. (ed.) Rev.
Sel. Papers 25th Intl. Ws. Recent Trends in Algebraic Development Techniques (WADT 2020).
Lect. Notes Comp. Sci., vol. 12669, pp. 120–141. Springer (2020)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits

https://www.omg.org/spec/UML/2.5.1
https://www.omg.org/spec/PSCS/1.2
http://creativecommons.org/licenses/by/4.0/

20 T. Rosenberger, A. Knapp, M. Roggenbach

use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

	An Institutional Approach to Communicating UML State Machines

