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Abstract
Quantitative notions of bisimulation are well-known tools for the minimization of dynamical models
such as Markov chains and differential equations. In a forward-type bisimulation, each state in the
quotient model represents an equivalence class and the dynamical evolution gives the overall sum
of its members in the original model. Here we introduce generalized forward bisimulation (GFB)
for dynamical systems over commutative monoids and develop a partition refinement algorithm
to compute the largest one. When the monoid is (R, +), our framework recovers probabilistic
bisimulation for Markov chains and more recent forward bisimulations for systems of nonlinear
ordinary differential equations. When the monoid is (R, ·) we can obtain nonlinear model reductions
for discrete-time dynamical systems and ordinary differential equations where each variable in the
quotient model represents the product of original variables in the equivalence class. When the
domain is a finite set such as the Booleans B, we can apply GFB to Boolean networks, a widely used
dynamical model in computational biology. Using a prototype implementation of our minimization
algorithm for GFB, we find several disjunction- and conjuction-preserving reductions on 60 Boolean
networks from two well-known model repositories.
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1 Introduction

Bisimulation is a fundamental tool in computer science for abstraction and minimization,
relating models by useful logical and dynamical properties [40]. Originally developed to
reason about concurrent processes in a non-quantitative setting [38], it has been extended
to quantitative models based on labeled transition systems, such as, e.g., the notion of
probabilistic bisimulation [24], closely related to ordinary lumpability for Markov chains [8].

Forward bisimulations relate states based on criteria that depend on their outgoing
transitions (as opposed to backward bisimulations that depend on incoming transitions,
e.g., [17]). When applied to a dynamical system (DS), forward bisimulations preserve
properties related to sums of values of state variables. E.g, probabilistic bisimulation
for Markov chains yields a quotient model where each state represents an equivalence
class that preserves the sum of the probabilities of its members; forward bisimulation for
reaction networks identifies equivalence classes among the chemical species that preserve the
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total concentration [11, 10]; forward differential equivalence (FDE) for nonlinear ordinary
differential equations (ODEs) relates state variables and preserves sums of their solutions [12].

An attractive feature of bisimulation is that one can compute the largest bisimulation
equivalence using partition refinement, based on the pioneering solution for concurrent
processes [35]. This can make bisimulation an effective approach for the minimization of
complex DS, adding to a wealth of cross-disciplinary methods originated in e.g., chemical
engineering [34], control theory [1], and systems biology [43].

Thus far, one can identify two common properties of the various incarnations of forward
bisimulation for DS. First, they preserve sums of state values; second, the DS variables take
real R values. There are, however, reasons that call for extensions or generalizations of
this setting. E.g., a forward bisimulation for ODEs can be seen as a special case of linear
lumping [34], a minimization achieved by an appropriate linear projection of the state space
operated by a matrix that encodes the partition of the state variables. However, one may be
also interested in nonlinear lumpings where each state in the reduced model represents a
nonlinear transformation of original variables [26]. Another motivating question tackled in
this paper is the generalization of the domain on which the DS evolves. Forward bisimulation
is not currently applicable to DS that evolve over finite domains. Consider, e.g., the DS

x1(k + 1) = x2(k) ∨ x3(k) x2(k + 1) = x1(k) ∨ x3(k)
x3(k + 1) = ¬x3(k) ∧ (x1(k) ∨ x2(k)) (1)

where the state variables x1, x2, and x3 are defined over the Booleans B = {0, 1}, and k
denotes discrete time. This is an example of a Boolean network (BN), an established model
of biological systems [22], sometimes introduced as a discrete-time qualitative analogue of
differential equations [44], where quantitative species concentrations are abstracted into
qualitative activation values of the variables (e.g., 0/1 for inactive/active components).

Here we develop a more abstract notion of forward bisimulation, generalized forward
bisimulation (GFB), for a DS over a (commutative) monoid. We show that this is a
conservative extension with respect to the literature because we recover available notions of
forward bisimulation for DS when the monoid is (R,+). However, it is more general. E.g.,
over the monoid (B,∨) one can prove that variables x1 and x2 in (1) are GFB equivalent, i.e.,
we can rewrite the model in terms of x1 ∨ x2 and x3. Indeed, by computing the disjunction
of the left- and right-hand-side of x1 and x2 in (1) we get

x1(k + 1) ∨ x2(k + 1) = x2(k) ∨ x3(k) ∨ x1(k) ∨ x3(k) = x3 (k) ∨ (x1 (k) ∨ x2 (k))

By introducing the derived variable x1,2 ≡ x1 ∨ x2, we get the GFB-reduced model:

x1,2(k + 1) = x3(k) ∨ x1,2(k) x3(k + 1) = ¬x3(k) ∧ x1,2(k) (2)

This can be used in place of the original model if one is not interested in the individual
values of x1 and x2, but only in their disjunction.

In this paper we show that GFB satisfies two desirable properties for bisimulation relations.
i) Over any commutative monoid (M,⊕), GFB characterizes ⊕-preserving reductions, in

the sense that any DS with fewer state variables which coincide with ⊕-operations of
original state variables must necessarily be the quotient of a GFB. This generalizes
characterization results for Markov chains [24], chemical reaction networks [9], and
nonlinear ODEs [12]. Notably, our characterization result also covers the asymptotic
dynamics, often of interest when analyzing DS (see, e.g., [21]). We show that GFB
preserves all attractors, i.e., the states towards which the DS tends to evolve and remain.
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ii) GFB can be computed by a partition refinement algorithm. We develop a template
algorithm which hinges on the computation of a formula whose decidability and com-
plexity depend on the domain and the right-hand sides of the dynamical system under
study. In general, this can be undecidable. However, when the monoid is (R,+) our
algorithm reduces to that for forward differential equivalence for nonlinear ODEs [12].
Instead, when the domain is B, the problem corresponds to Boolean satisfiability.

iii) For polynomial ODEs and the monoid (R, ·), we obtain, to the best of our knowledge,
the first algorithm for nonlinear model reduction in (randomized) polynomial time.

On the other hand, while previous results are essentially agnostic to whether the time
evolution of the DS is continuous or discrete, in the more general setting of GFB more care
has to be taken. More specifically, it is well understood that the criteria for probabilistic
bisimulation [24] are the same for both continuous-time and discrete-time Markov chains.
Similarly, FDE equivalently applies to both a nonlinear ODE system in the form ∂tx = f(x)
(where ∂t denotes time derivative) and to a discrete-time nonlinear DS in the form x(k+ 1) =
f(x). For GFB, we show that this does not hold any longer. For this reason, we first develop
GFB for discrete-time DS. Then, we consider continuous time by considering GFB for DS
over the reals, thereby relating to, and extending, results for ODEs.

Applications. Using a prototype implementation, we apply GFB to case studies from
different domains. We consider Boolean and multi-valued networks [22, 45], where the latter
allows for finer degrees of activation than just inactive/active as in (1). These models are
known to suffer from state-space explosion, making model reduction particularly appealing
(see, e.g., [2]). We select two case studies from the literature to showcase the physical
intelligibility of GFB reductions: we show how (B,∧) allows to identify and abstract away
from distinct sub-models (biological pathways); we show how finite monoids and operations
min and max allow studying full model (de)activation, meaning that we obtain reductions
that track groups of components whose activation status denote the (de)activation of different
mechanisms of the model. We also perform a large-scale validation of GFB on 60 models
from established repositories (GinSim [29], BioModelsDB [27]). We show that GFB is useful
due to its high reduction power, and the high speed-up obtained in attractors computation.

2 Related work

Most of the literature about model minimization can be found for dynamical systems over
the reals. In this context, the general framework of exact lumping considers model reductions
by means of both linear and nonlinear operators [25, 46]. The aforementioned notions of
bisimulation for Markov chains and FDE can be seen as specific linear reductions that are
induced by a partition of the state space. Indeed, this corresponds to a specific type of
minimization known as proper lumping, where each original variable is represented by only
one variable in the reduced model [34]. Since also GFB is developed in the same style,
it too can be seen as a special case of exact lumping. However, the largest GFB can be
computed in randomized polynomial time when the dynamics is described by polynomials
over the monoids (R,+) or (R, ·), see [14] and Section 5. Instead, the computation of exact
lumpings hinges in the case of polynomial dynamics on symbolic computations which exhibit
an exponential worst case complexity [26, Section 2.2].
L-bisimulation [6, 7] can be seen as a generalization of backward differential equivalence

(BDE) [12], a backward-type bisimulation for non-linear ODEs, and is thus complementary
to FDE (hence, GFB), as discussed in [6, 7, 5]. It is also worth noting that neither BDE nor
L-bisimulation allow for model reduction through nonlinear transformations, in contrast to
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GFB. Similarly to L-bisimulation, consistent abstraction (aka bisimulation) [36, 37, 47] is
complementary to GFB. Indeed, for a so-called observation function, the largest consistent
abstraction gives rise to a minimal reduced dynamical system which coincides with the
original one up to the chosen observation function. Instead, computing the largest GFB
corresponds to the task of finding an observation function which induces a largest consistent
abstraction. Hence, GFB reduces across observation functions, while consistent abstraction
reduces with respect to a given observation function. Moreover, in contrast to consistent
abstraction, GFB considers the subclass of observation functions induced by equivalence
relations. To the best of our knowledge, the computation of an observation function yielding
a minimal reduced model has been investigated for linear dynamics only [36].

Model-reduction approaches have been developed in the field of Boolean networks. Here, [3]
proposes Boolean backward equivalence (BBE), a backward-type bisimulation in line with
those for Markov chains [8] and BDE. Similarly to the notions for Markov chains and
ODEs [12], it can be shown that BBE and GFB (when applied to BNs) are not comparable.
Further approaches for BN reduction are based on the idea of variable absorption (see,
e.g., [33, 48]) where selected variables are absorbed by the update functions of their target
variables by replacing all occurrences of the absorbed variables with their update functions.
These approaches are complementary to GFB because they do not compute exact reductions,
meaning that they might introduce spurious behaviours.

3 Preliminaries

In this section we begin by formalizing the notion of dynamical system and notation considered
in this paper. After that, we provide a running example used throughout the text.

I Definition 1 (Dynamical System). A discrete-time dynamical system (DS) is a pair D =
(X,F ) where X = {x1, . . . , xn} is a set of variables and F = {fx1 , . . . , fxn} is a set of update
functions, where fxi : MX →M is the update function of variable xi. Elements of MX are
states. The solution (aka simulation) of D underlying the initial state s(0) ∈MX is given by
the sequence (s(k))k≥0, where s(k + 1) = F (s(k)) for all k ≥ 0.

We use R to denote an equivalence relation over X, and XR the induced partition. We
often do not distinguish among an equivalence relation and its induced partition. If not
explicitly mentioned, we assume that ⊕ : M×M→M is such that (M,⊕) is a commutative
monoid with neutral element 0⊕. Moreover, GI denotes the set of all (total) functions from
I to G and f [a/b] is the term arising by replacing each occurrence of a by b in f .

To explain the main concepts, we utilize a published Boolean network from [4] that
describes cell differentiation. Deeper biological interpretation of the model and its reduction
presented in the paper will be given in Section 7.

I Example 1. Consider the discrete-time DS (X,F ) with Boolean variables

X = {SCR, SHR, JKD,MGP,WOX5, CLEX, PLT, ARF, AUXIAA, AUXIN}

and Boolean update function F : BX → BX with:

fSCR = SHR ∧ SCR ∧ (JKD ∨ ¬MGP) fCLEX = SHR ∧ CLEX

fSHR = SHR fPLT = ARF

fJKD = SHR ∧ SCR fARF = ¬AUXIAA

fMGP = SHR ∧ SCR ∧ ¬WOX5 fAUXIAA = ¬AUXIN

fWOX5 = ARF ∧ SHR ∧ SCR ∧ ¬CLEX fAUXIN = AUXIN
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Possible monoids for this DS are (B,⊕) with ⊕ ∈ {∧,∨,XOR} with neutral elements 1, 0
and 0, respectively.

We next recall the notion of attractor for discrete-time DS [28].

I Definition 2 (Attractor). Let D = (X,F ) be a discrete-time DS. A non-empty set A ⊆MX

is called attractor of D (with respect to some given topology of MX) whenever
A is invariant under F , that is, F (A) ⊆ A;
there is an open neighborhood B of A such that for any v ∈ B there exists a ν ≥ 1 such
that Fn(v) ∈ A for all n ≥ ν. B is called a basin of attraction of A.

I Example 2. Let s = (0, 0, 0, 0, 0, 1, 1, 1, 0, 1) ∈ BX denote a state of the DS from Example 1
where the variables CLEX, PLT, ARF, AUXIN are active, and all the others are inactive. By applying
the update functions we get F (s) = s′ = (0, 0, 0, 0, 0, 0, 1, 1, 0, 1) ∈ BX , where PLT, ARF and
AUXIN are active, and all the others inactive. If we apply the update functions again, the
system remains in the same state, i.e., F (s′) = s′, meaning that {s′} is an attractor.

4 Generalized Forward Bisimulation

In this section we define generalized forward bisimulation (GFB), the notion of GFB reduction,
and show that GFB reductions preserve the original model dynamics.

I Definition 3 (Generalized Forward Bisimulation). Let D = (X,F ) be a discrete-time DS,
(M,⊕) a commutative monoid and XR a partition of X. Then, XR is a GFB when the
following formula holds true:

∀s, s′ ∈ MX .
∧

C∈XR

(⊕
xi∈C

sxi =
⊕
xi∈C

s′xi

)
=⇒

∧
C∈XR

(⊕
xi∈C

fxi(s) =
⊕
xi∈C

fxi(s′)
)
.

The homomorphism of R, denoted by ψR : MX →MXR , is given by

ψR(s)C =
⊕
xi∈C

sxi , for all C ∈ XR.

I Example 3. Using ⊕ = ∧, we can show that XR is a GFB for our running example, where

XR = {C, {PLT}, {ARF}, {AUXIAA}, {AUXIN}}, with C = {SCR, SHR, JKD,MGP,WOX5, CLEX}

Essentially, this implies that the running example can be rewritten solely in terms of con-
junctions over all variables in C, and the remaining individual variables. To this end, we
first note that for all xi /∈ C we have that fxi is independent of any xj ∈ C. 1 Moreover, we
observe that the update functions of WOX5 and CLEX contain terms ¬CLEX and CLEX, respectively,
therefore the conjunction of their update functions (and of all variables in C) can be simply
rewritten as 0 since:

∧
xi∈C

fxi(s) = sCLEX ∧ ¬sCLEX ∧ (. . .) = 0.

We next introduce the notion of the reduced DS with respect to a GFB R.

1 However, the original system is not trivially decoupled in variables in C and variables not in C, because
ARF appears in the update function of WOX5.
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I Definition 4 (Reduced DS). The reduction of a discrete-time DS D = (X,F ) for an
equivalence relation R, denoted by D/R, is the DS (XR, FR) with FR = (fC)C∈XR such that

fC =
⊕
xi∈C

fxi [xk/0⊕ : xk /∈ X̂][xiC′/xC′ : C ′ ∈ XR],

where xiC ∈ C is a representative of C ∈ XR and X̂ = {xiC : C ∈ XR} is the set of all
representatives.

I Example 4. We compute the reduced DS of our running example for the GFB XR from
Example 3. We choose JKD as representative of C, while the choice of the representative for
the other (singleton) blocks is immediate. With this, we obtain

fC =
∧
xk∈C

fxk [xk/1 : xk /∈ X̂][xiC′/xC′ : C ′ ∈ XR]

= 1 ∧ 1 ∧
(
C ∨ ¬1

)
∧ 1 ∧ 1 ∧ 1 ∧ 1 ∧ 1 ∧ ¬1 ∧ {ARF} ∧ 1 ∧ 1 ∧ ¬1 ∧ 1 ∧ 1 = 0

For all other blocks, instead, we obtain

f{PLT} = {ARF}, f{ARF} = ¬{AUXIAA}, f{AUXIAA} = ¬{AUXIN}, f{AUXIN} = {AUXIN}

I Remark 5. We note that, syntactically, the reduced DS depends on the choice of represent-
atives. However, if R is a GFB, then Theorem 6 guarantees that such choice does not affect
the semantics of the reduced DS.

We next prove that D and D/R share the same dynamics up to ψR iff R is a GFB.2

I Theorem 6 (GFB characterization via model dynamics). Fix a DS D = (X,F ), some partition
XR of X and let D/R = (XR, FR), for an arbitrary but fixed choice of representatives. Then,
if (M,⊕) is a commutative monoid, R is a GFB if and only if for any initial state s0 ∈MX ,
the solutions of D and D/R for s0 and ŝ0 = ψR(s0), respectively, are equal up to ψR, i.e.:

ŝk = ψR(sk), for k ≥ 0,where sk+1 = F (sk) and ŝk+1 = FR(ŝk).

Theorem 6 readily implies the following result on attractors.

I Corollary 7. Let D = (X,F ) be a DS, (M,⊕) a commutative monoid, R a GFB and
D/R = (XR, FR) the underlying reduced DS. Then, we have the following two (equivalent)
statements.

If A ⊆MX is an attractor of D, then ψR(A) ⊆MXR is an attractor of D/R.
If A ⊆MXR is not an attractor of D/R, then ψ−1

R (A) ⊆MX is not an attractor of D.

I Example 5. We consider the attractor A = {(0, 0, 0, 0, 0, 0, 1, 1, 0, 1)} of the running example
from Example 2. The homomorphism ψR maps the attractor to ψR(A) =

{
(0, 1, 1, 0, 1)

}
. The

Corollary 7 ensures that the set ψR(A) is an attractor of the reduced system D/R. Indeed, by
applying the update functions FR to the state (0, 1, 1, 0, 1), the reduced system D/R remains
at the same state, and thus ψR(A) is invariant under FR.

2 Note: all proofs are given in the appendix.
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5 Computation of the largest GFB

The computation of the largest (alternatively, coarsest) GFB that refines some given initial
partition is based on the classic partition refinement algorithm [35] where the blocks of an
initial partition are iteratively refined (or split) until a GFB is obtained. The largest GFB is
obtained when the initial partition contains a singleton block; the freedom in choosing an
arbitrary initial partition can be useful in applications to tune the reductions to preserve
variables of interest, as discussed in Section 7. Here we prove that there exists a unique
largest GFB that refines a given initial partition, and that the algorithm computes it.

I Theorem 8. Let D = (X,F ) be a discrete-time DS, R an equivalence relation over X,
and XR the induced partition. There exists a unique coarsest GFB H that refines XR.

A partition refinement algorithm for computing GFB needs a condition allowing us to
tell: (i) if the current partition is a GFB, and, if not, (ii) how to split its blocks towards
getting a GFB. Definition 3 can only be used for Point (i). Theorem 9 below provides a
binary, relation-driven, characterization of GFB which allows for Point (ii). The intuition is
that, by applying such binary characterization pairwise to all variables in each block of the
current partition, we get the sub-blocks in which they should be split in the next iteration.

I Theorem 9 (Binary Characterization of GFB). Let D = (X,F ) be a DS, (M,⊕) a commut-
ative monoid, R an equivalence relation on X, and XR the induced partition. Then, XR is a
GFB if and only if for any (xi, xj) ∈ R with xi 6= xj, the following formula holds:

ΨXRxi,xj ≡
∧

C∈XR

(⊕
xk∈C

fxk =
⊕
xk∈C

fxk [xi/0⊕][xj/(xi ⊕ xj)]
)
,

where 0⊕ is the neutral element of ⊕.

Intuitively, the binary characterization tells us that we can rewrite an ⊕-expression of the
update functions of a block of a GFB partition in terms of ⊕-expressions of pairs of GFB
equivalent variables xi and xj . This can be done by successively moving, pair by pair, all
variables of a GFB equivalence class to a chosen representative.

We now exemplify ΨXRxi,xj on our running example.

I Example 6. Let us consider again the GFB XR from Example 3, the only non-singleton
block C ∈ XR, and the two variables SHR, JKD ∈ C. With ⊕ = ∧ and 0∧ = 1, we obtain∧

xk∈C
fxk = SHR ∧ SCR ∧ (JKD ∨ ¬MGP) ∧ SHR ∧ SHR ∧ SCR ∧ SHR ∧ SCR ∧ ¬WOX5 ∧ ARF ∧ SHR

∧ SCR ∧ ¬CLEX ∧ SHR ∧ CLEX

= 0
= 1 ∧ SCR ∧ ((JKD ∧ SHR) ∨ ¬MGP) ∧ 1 ∧ 1 ∧ SCR ∧ 1 ∧ SCR ∧ ¬WOX5 ∧ ARF ∧ 1
∧ SCR ∧ ¬CLEX ∧ 1 ∧ CLEX

=
∧
xk∈C

fxk [SHR/1, JKD/(SHR ∧ JKD)]

For any C ′ ∈ XR with C ′ 6= C, the clause is trivially true because SHR and JKD appear only in
the update functions of variables in C. Therefore, ΨXRSHR,JKD is valid. In a similar way, one
can show that ΨXRxi,xj is valid for all (xi, xj) ∈ R with xi 6= xj , confirming that XR is a GFB.

The next result addresses the algorithmic computation of the largest GFB.
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Algorithm 1 Compute the largest GFB that refines an initial partition XR for DS (X, F ).

1: while true do
2: H′ ← ∅
3: for all H ∈ H do
4: R← {(xi, xj) ∈ H ×H : if xi 6= xj ,

then ΨHxi,xj and ΨHxj ,xi}
5: H′ ← H′ ∪ (H/R)
6: end for

7: if H = H′ then
8: return H
9: else

10: H ← H′
11: end if
12: end while

I Theorem 10. Let D = (X,F ) be a discrete-time DS and XR a partition. Algorithm 1
computes the largest GFB refining R by deciding at most O(|X|3) instances of formula ΨHxi,xj .
If M is finite, any formula ΨHxi,xj is decidable.

The decidability of ΨHxi,xj in case where M is infinite is less immediate. Indeed, since
deciding ΨHxi,xj amounts to deciding identities between functions, decidability over infinite
domains critically hinge on the nature of the update functions. For instance, if M = R, the
conditions of ΨHxi,xj require one to decide the equivalence of real-valued functions. If ⊕ = +
and update function terms arise through addition and multiplication of variables and may
contain minima and maxima expressions, the problem is double exponential [12]. If also
exponential and trigonometric functions are allowed, the problem becomes undecidable [39].

We thus study the complexity of deciding ΨHxi,xj when (fxi)xi∈X are polynomials and
⊕ ∈ {+, ·}. In such a case, checking ΨHxi,xj amounts to deciding whether the polynomials⊕

xk∈C
fxk and

⊕
xk∈C

fxk [xi/0⊕][xj/(xi ⊕ xj)]

are equal. In case of the real and complex field, this question is equivalent to polynomial iden-
tity testing for which no holistic algorithms with polynomial time complexity are known [41].3
Fortunately, the following result readily follows from the Schwartz-Zippel lemma [41].

I Theorem 11. Let D = (X,F ) be a discrete-time DS and XR a partition. Then, if (fxi)xi∈X
are polynomials over some (sufficiently large) field M and ⊕ ∈ {+, ·}, Algorithm 1 runs
in randomized polynomial time. More specifically, assume that ΨHxi,xj is false and that it
involves polynomials of degree less or equal d. Then, for any finite set S ⊆M, any C ∈ H
and a uniformly sampled v ∈ SX , we have that

P
{⊕
xk∈C

fxk(v) =
⊕
xk∈C

fxk [xi/0⊕][xj/(xi ⊕ xj)](v)
}
≤ d

|S|
,

where P{A} denotes the probability of event A. In particular, one obtains a polynomial time
randomized algorithm whenever M has more than d elements.

6 Continuous-time DS

We hereby relate GFB to continuous-time DS, showing how GFB encapsulates previous
notions of bisimulations for (nonlinear) systems of ODEs. Thus, in what follows we will

3 The common holistic approach rewrites a polynomial into a sum of monomials. Hence, if ⊕ = · and all
fxk have, say, 2 monomials, a direct computation of the monomials of ⊕xk∈Cfxk requires O(2|C|) steps.



G. Argyris, A. L. Lafuente, M. Tribastone, M. Tschaikowski, A. Vandin 9

consider R as the domain over which the DS evolves. In this case, one can study minimizations
for an ODE system ∂tv(t) = Φ(v(t)) (where ∂t denotes time derivative) using GFB on its time
discretization (X,F ), where F (s) = s+τΦ(s). Standard results imply that the approximation
error between the ODE system and its time discretization vanishes if τ approaches zero [20].

Exact lumpability. GFB-type reductions can be captured by exact lumpability, a
well-established notion of model minimization for ODEs [25, 46]. This is because an exact
lumping must not be necessarily induced by a partition of the state variables. However, we
will show that when an exact lumping on an ODE system is described by the homomorphism
ψR of an equivalence relation R, then it must necessarily be a GFB for its discretization.

We start with the definition of exact lumping [25].

I Definition 12. Given an ODE system ∂tv(t) = Φ(v(t)) with a differentiable function
Φ : RX → RX , a twice differentiable function ψ : RX → RX̂ is an exact lumping if |X̂| < |X|
and there is a unique differentiable function Φ̂ : RX̂ → RX̂ such that for any v : [0;T ]→ RX
satisfying ∂tv(t) = Φ(v(t)), it holds that ∂tψ(v(t)) = Φ̂(ψ(v(t))) for all t ∈ [0;T ].

For example, consider the model given by vx1 = vx1 and vx2 = vx2 . Then, ψ(vx1 , vx2) =
vx1vx2 is an exact lumping since ∂tψ(v) = (∂x1ψ(v)∂x2ψ(v))·Φ(v) = (vx2 , vx1)·(∂tvx1 , ∂tvx2)T
= 2vx1vx2 = 2ψ(v), where superscript T denotes the transpose of a vector. Now we can
observe that this can be discovered using GFB on the time discretization of the ODE system,
given by fx1(s) = sx1 +τsx1 , and fx2(s) = sx2 +τsx2 . Indeed XR = {{x1, x2}} is a GFB over
(R, ·) since fx1·fx2 = (x1+τx1) ·(x2+τx2) = x1x2+2τx1x2+τ2x1x2 = (fx1·fx2)[x2/1, x1/x1x2].
This shows that ψR is indeed an exact lumping of. The next result formalizes this relationship.

I Theorem 13. Given ∂tv(t) = Φ(v(t)) with a differentiable function Φ : RX → RX ,
consider the DS D = (X,F ) with F (s) = s+ τΦ(s) where τ > 0. Further, let us assume that
⊕ : R× R→ R is twice differentiable and that (R,⊕) is a commutative monoid. Then, for
any partition XR of X:
1) If R is a GFB of D, then ψR is an exact lumpability of ∂tv(t) = Φ(v(t)).
2) If ψR is linear, then R is a GFB of D if and only if ψR is an exact lumpability of

∂tv(t) = Φ(v(t)).

With the exception of the important special case where ψR is linear, Theorem 13 does
not address the question whether GFB is also a necessary condition for exact lumpability.
Indeed, it turns out that a characterization requires one to relax formula ΨXRxi,xj so that,
roughly speaking, it deliberately ignores the terms of (higher) order τ2, τ3, ... and so on.

I Lemma 14. Consider the continuous DS given by ∂tvx1 = vx1 log(vx2) and ∂tvx2 =
vx2 log(vx1). Together with v ⊕ v′ = log(v) + log(v′) and XR = {{x1, x2}}, it then holds that
ψR(vx1 , vx2) = log(vx1) + log(vx2) is an exact lumping, while XR is not a GFB.

The next result characterizes exact lumpings of the form ψR and thus accounts for
Lemma 14 and generalizes Theorem 13. As anticipated, we have to ignore higher-order terms
O(τ2) when checking ΨXRxi,xj , where O is the big O notation from numerical analysis.

I Theorem 15. Given ∂tv(t) = Φ(v(t)) with a differentiable vector field Φ : RX → RX ,
consider the DS (X,F ) with F (s) = s + τΦ(s) where τ > 0. Further, let us assume that
⊕ : R × R → R is twice differentiable and that (R,⊕) constitutes a commutative monoid.
Then, for any partition XR of X, function ψR is an exact lumping if and only if for all
(xi, xj) ∈ R with xi 6= xj formula ΨXRxi,xj is valid up to O(τ2), that is∧

C∈XR

(⊕
xk∈C

fxk +O(τ2) =
⊕
xk∈C

fxk [xi/0⊕][xj/(xi ⊕ xj)] +O(τ2)
)
. (3)
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We conclude this section by noting that if the update functions (fxi)xi∈X are polynomials,
then (3) can be checked algorithmically by representing polynomials as sums of monomials
and by dropping afterwards all monomials containing a term τν with ν ≥ 2.

Forward differential equivalence and Markov chains. With the results of the
previous subsection in place, we are now ready to relate GFB with related work on analogous
bisimulation relations for dynamical systems. We start by restating the notion of forward
differential equivalence of FDE from [12].

I Definition 16 (FDE). Given ODEs ∂tv(t) = Φ(v(t)) with a differentiable function Φ :
RX → RX . A partition XR of X is called FDE if ψR in case of ⊕ = + is an exact lumpability.

The next result is a consequence of Theorem 13 showing that GFB encapsulates FDE [12].

I Corollary 17. Given ∂tv(t) = Φ(v(t)) with a differentiable vector field Φ : RX → RX ,
consider the DS D = (X,F ) with F (s) = s+ τΦ(s) where τ > 0. Then, for monoid (R,+),
we have that R is a GFB of D if and only if R is an FDE of ∂tv(t) = Φ(v(t)).

Similarly, the next corollary relates GFB with continuous-time Markov chains [8] and
probabilisitic bisimulation of discrete-time Markov chains [24].

I Corollary 18. Let (X,Q) be a continuous-time Markov chain with states X and transition
rate matrix Q ∈ RX×X . Consider the DS D = (X,F ) with F (s) = s+ τQT s where τ > 0.
Then, D is an embedded discrete-time Markov chain of (X,Q) for sufficiently small τ > 0.
With this, for monoid (R,+) the following three conditions are equivalent: 1. R is a GFB of
D; 2. R is an ordinary lumpability of (X,Q); 3. R is a probabilistic bisimulation of D.

I Remark 19. The above discussion ensures that ΨHxi,xj from Algorithm 1 can be decided in
polynomial time for forward differential equivalence and probabilistic bisimulation, see [12].

Attractors of continuous-time DS. The notion of attractor from Definition 2 also
exists for continuous-time dynamics [23].

I Definition 20 (Attractor). Consider an ODE system ∂tv(t) = Φ(v(t)) with a differentiable
vector field Φ : RX → RX . A compact nonempty set A ⊆ RX is an attractor (aka asymptot-
ically stable), if there exists an open neighborhood B of A such that for any ε > 0 there is
some time t′ ≥ 0 such that for any v[0] ∈ B, the solution of ∂tv(t) = Φ(v(t)) with v(0) = v[0]
satisfies d(v(t), A) ≤ ε for all t ≥ t′. Here, d(v(t), A) = mina∈A d(v(t), a) and distance d is
induced, similarly to B, by some norm.

The next result from [23] essentially ensures that attractors of an ODE system can be
approximated by attractors of its discrete-time discretization.

I Theorem 21 ([23]). Given ∂tv(t) = Φ(v(t)) with a differentiable vector field Φ : RX → RX ,
let A ⊆ RX be an attractor of ∂tv(t) = Φ(v(t)). Then, for any τ > 0, there exists a set
A(τ) ⊆ RX such that

F (A(τ)) ⊆ A(τ), where F (s) = s+ τΦ(s) and;
The sets A(τ) converge to the set A in the Hausdorff metric as τ → 0.

Together with Corollary 7, Theorem 21 allows to use GFB to argue on attractors of ODE
systems. Less importantly, we note that Theorem 21 does not explicitly provide basins of
attraction for the sets A(τ). However, A(τ) are attractors when the discrete topology is used.
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Figure 1 (Left) Pictorial representation of the Boolean network from Example 1 using GinSim [30],
adapted from [4]. (Right) Pictorial representation using GinSim [30] adapted from [19] of the model
on eggshell formation for drosophila melanogaster flies.

7 Applications

7.1 Regulatory Networks

We now apply GFB to Boolean and multi-valued networks from the literature.
Boolean network case study. We present in greater detail the BN from Example 1

used as running example. To ease the interpretation of the results, we will use the typical
graphical notation of influence graphs, as shown in Figure 1 (left). Each variable is denoted
as a node, while arrows denote influences among nodes coming from the update functions:
green arrows denote a positive influence (promotion), while red arrows denote a negative
one (inhibition). In Example 1, ARF promotes PLT due to the term ARF in fPLT. , while AUXIN

inhibits AUXIAA due to term ¬AUXIN in fAUXIAA.
The BN consists of two connected pathways: one for the transcription factor SHR with its

signalling to the other variables of the pathway (we highlight in yellow the involved nodes),
and the other involves the hormone AUXIN and its signaling to the plethora (PLT) genes.

BN variables are commonly categorized into three groups [31]: inputs (SHR, and AUXIN) that
do not have incoming edges, outputs (PLT) that do not have outgoing edges, and internal nodes,
i.e., those that have both incoming and outgoing edges. The distinction is also obvious from
update functions: input variables have a constant update function, while output variables do
not appear in the update function of other variables. In particular, input variables are often
set by the modeler to perform different what if experiments, whereas output ones are used
to observe the response dynamics of the model. Here, each input controls its own pathway,
meaning that the modeller can decide whether to enable them via appropriate initial states.

Considering the GFB XR from Example 3 obtained for ⊕ = ∧, we can see that the
only non-trivial block C = {SCR, SHR, JKD,MGP,WOX5, CLEX} corresponds to the yellow nodes in
Figure 1 (left). This GFB is computed by our algorithm for the initial partition that consists
of two blocks separating outputs and non-output nodes.

Considering the reduced model for XR from Example 6, all yellow nodes in Figure 1 (left)
get collapsed into one, meaning that the SHR pathway is abstracted away. In other words,
in this example GFB has automatically identified and simplified a pathway in the model,
offering a coarser representation of the system focusing on one pathway only (the AUXIN one).

Multi-valued network case study. We now apply GFB to a multi-valued regulatory
network from [19]. Intuitively, as we will see, a multi-valued network (MV) is a BN where
variables might admit more than two values. This is a single-cell model describing the
development of eggshell structures in drosophila melanogaster flies. The model has seven
variables with relations depicted in Figure 1 (right) coming from the update functions:
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fEGF = EGF fRoof = Ant :1 ∧ EGF :1 ∧ BMP :0 fRoofAdj = RoofAdj

fBMP = BMP fFloor = Ant :1 ∧ (EGF :2 ∨ (EGF :1 ∧ BMP :1)) ∧ RoofAdj :1
fAnt = Ant fOperc = Ant :1 ∧ (EGF :2 ∨ (EGF :1 ∧ BMP :1)) ∧ RoofAdj :0

Using the notation in [19], “var : v” stands for variable var has value v. This is a Boolean
predicate evaluating to 1 if var has value v, and 0 otherwise. Variable EGF, denoted with
a rectangular node in Figure 1 (right), can take values 0, 1, 2, denoting three different
activation levels (absent, intermediate and high). All other variables are Boolean (0 or 1).4

Differently from Figure 1 (left), the variables divide in two groups only: the inputs EGF,
BMP, Ant, and RoofAdj, and the outputs Operc, Floor, and Roof. Another difference is that we have a
third edge type, the purple one from EGF to Roof. This is to visually stress that EGF influences
Roof only when in intermediate level and not when in high level, respectively values 1 and 2.

The model relates three distinct follicle cell fates (the outputs), to combinations of values
of the four inputs. EGF and BMP are known signaling pathways responsible for patterning
of the drosophila eggshell [19]. This is encoded in the model in the sense that EGF and BMP

influence, in different ways, all the three outputs. Finally, Ant, which stands for anterior,
models the anterior competence region, therefore it is required by all outputs, while RoofAdj

accounts for the state of neighboring cells by promoting Floor and inhibiting Operc (operculum).
Interestingly, the partition with one block for the three outputs, and singleton blocks

for each other variable, is a GFB for ⊕ ∈ {max,min}. Applying Definition 4 we get two
different reduced models in the two cases, enabling complementary studies. Case ⊕ = max
allows to study cases of full output deactivation, meaning that the resulting reduced variable
will get value 0 only if all output variables have value 0. Instead, case ⊕ = min allows to
study full output activation, as the corresponding reduced variable will have value 1 only
when all output variables have value 1. By naming outputs the reduced variable corresponding
to the block of outputs, after applying Definition 4 and some algebraic simplification we get

foutputs = Ant :1 ∧ (EGF :1 ∨ EGF :2), for ⊕ = max, foutputs = 0, for ⊕ = min,

while the update functions of the input variables remain unchanged. From this we get that:
despite the three outputs have different dependencies on Ant, BMP, RoofAdj, and on different
values of EGF, in the ⊕ = max case it is enough to consider only ANT and EGF to answer
questions related to full output deactivation. Furthermore, it is not necessary anymore to
use three values for EGF, as we are only interested in the cases in which it is 0 or positive
(EGF :1 ∨ EGF :2). Instead, from the ⊕ = min case we know that the original model never
expresses cases of full activation, i.e., it never happens that the three outputs contemporary
have value 1. Indeed, by studying the update functions of the three original output variables,
we can see that there are no values for the involved variables that makes all of them true.

Large-scale validation of GFB on regulatory networks. We present a large-
scale validation of GFB on the BNs and MVs from the repositories GinSim (accessible
at http://ginsim.org/models_repository) and BioModelsDB [27]. We validate GFB in
terms of aggregation power and of speed-up offered for attractor analysis.

4 We note that our framework requires all variables to have same domain M. In order to support MV
networks, we implicitly expand the domain of all variables to the largest one (e.g., {0, 1, 2} of EGF). This
does not change the models’ dynamics, in the sense that when setting initial states fitting in the original
domain will only encounter states fitting in the original domain.

http://ginsim.org/models_repository
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Experimental setting. Experiments were performed using our prototype implementation
of GFB in ERODE [13].5 The formulas ΨHxi,xj in Algorithm 1 were checked exploiting an
integration of ERODE with the SMT solver Z3 [16]. We added to ERODE an importer
for SBML Qual [15], an XML-based format supported by both repositories, allowing us to
import all 43 BNs and 50 MVs. In order to automatically synthesize physically relevant
initial partitions for each model, we implemented a check to infer candidate output variables,
those which do not appear in the update function of any other variable. These variables were
used to build output-preserving initial partitions (one block for the output variables, and
one for the rest). This guarantees that the reduced models allow, e.g., for studies on full
output (de)activation discussed before. In order to perform a consistent and fair treatment,
we selected the 29 BNs and 31 MVs with at least one candidate output.

Validation of aggregation power. Figure 2 (left) provides the reduction ratios obtained for
the BNs using ⊕ ∈ {∧,∨}. For each model we provide the reduction ratio as the number
of reduced variables over that of original ones. For each operator ⊕, the ratios were sorted
in ascending order. We can see that ⊕ = ∧ has high aggregation power, with about one
third of the models having a reduction ratio below 0.6, while for ⊕ = ∨ most of the models
have 0.8 or more. In the ⊕ = ∧ case we can see that some models have particularly low
ratios, below 0.2, some of which due to the fact that the reduced model has 2 species only.
We do not consider these as degenerate reductions, because of the used initial partitions,
as discussed. We do not present results on maximal reductions, e.g. those obtained with
the trivial initial partition with one block only. These are significantly smaller, but some
are degenerate with one species only. We leave for future work a more detailed study on
finer intermediate reductions obtained for model-specific initial partitions preserving exactly
the variables of interest for the modeler. Practically, modelers could decide to preserve only
some outputs rather than all/none. Figure 2 (right) presents a similar study performed on
the MV networks using ⊕ = min and ⊕=max confirming the aggregation power of GFB.

Validation of analysis speed-up. Corollary 7 ensures that GFB maps all attractors of the
original system to attractors of the reduced one. Here we show that this can speed-up attractor
computation. We use the COLOMOTO Notebook [32], an environment incorporating a
variety of tools for BN analysis. An example is BNS [18], which combines SAT-solving
and bounded model checking to identify attractors. We computed the attractors of the 29
considered BNs and of their reductions.6 Figure 2 (bottom) shows the obtained runtime
ratios (computation time of attractors in the reduced model over that in the original one).
In several cases the reduction led to significant analysis speed-ups: in 11 BNs the ratio is less
than 0.3. We remark that GFB is useful, because the analysis of the original BNs, the AND-
and OR-reductions took on average 100s, 30s and 60s, respectively. Notably, reductions with
low reduction ratios are particularly fast (fewer algorithm iterations): the 6 AND-reductions
in Figure 2 (left) with ratio smaller than 0.3 take less than 1.5 seconds on average.

7.2 Nonlinear Reduction of a Lotka-Volterra Model over Monoid (R, ·)

We present an example of exact lumping where ψR is not linear, and thus cannot be captured
by linear lumping methods such FDE. We use the commutative monoid (R, ·) with the neutral
element 1, and a prototypical three variables higher-order Lotka-Volterra model [42] where

5 Please contact us if interested in the tool, the models, and all material to replicate the experiments in
this paper.

6 We could not consider MVs because we are not aware of tools for general attractor analysis for MVs.
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Figure 2 (Left) Reduction ratios (reduced variables over original ones) in ascending order for
the 29 BN with outputs from GINsim and BioModelsDB. We used ⊕ ∈ {∧,∨} with initial partitions
with two blocks separating output and non-output species. (Right) Same as (Left) for the 31 MV
networks with outputs from the two repositories considering ⊕ ∈ {min, max}. (Bottom) Runtime
ratios in ascending order for computation of attractors for the 29 BNs and their reductions.

x1 preys x2 and x3, while x2 and x3 prey together x1. The corresponding ODE system is

∂tvx1 = vx1(1− vx2vx3), ∂tvx2 = vx2(1− vx1), ∂tvx3 = vx3(1− vx1). (4)

The underlying ODE discretization of (4) is

fx1(s)=sx1 +τsx1(1−sx2sx3), fx2(s)=sx2 +τsx2(1−sx1), fx3(s)=sx3 +τsx3(1−sx1).

By Theorem 13, the nonlinear function ψR(vx1 , vx2 , vx3) = (vx1 , vx2 ·vx3) is an exact lumping
of (4). Indeed, XR = {{x1}, {x2, x3}} is a GFB of (4) when ⊕ = · because ΨXRx2,x3

is then
valid thanks to the identities fx1 = x1 + τx1(1− x2x3) = fx1 [x2/1, x3/x2x3] and

fx2 · fx3 = (x2 + τx2(1− x1)) · (x3 + τx3(1− x1))
= x2x3 + 2τx2x3(1− x1) + τ2x2x3(1− x1)2 = (fx2 · fx3)[x2/1, x3/x2x3].

The lumped ODE system is then given by ∂tvx1 = vx1(1 − vx2vx3) and ∂t(vx2vx3) =
∂tvx2 · vx3 + vx2 · ∂tvx3 = vx2(1− vx1)vx3 + vx2vx3(1− vx1) = 2vx1vx2(1− vx1).

8 Conclusion

We introduced generalized forward bisimulation, a technique for dimensionality reduction of
dynamical systems over commutative monoids. One needs to specify a dynamical system
(i.e., a set of variables and their corresponding update functions), a commutative monoid (the
variables’ domain and an operation), and an initial partition of the variables. These are fed to
a partition refinement algorithm that minimizes the system over the operation of the monoid.
We implemented the method and applied it to 3 popular formalisms: difference equations with
monoid (R, ·), Boolean networks (B,∧) and (B,∨), and multi-valued networks ({0, 1, 2},min)
and ({0, 1, 2},max). In all these cases, we got nonlinear reductions. Considering 60 Boolean
and multi-valued networks from two popular repositories, we have shown the high aggregation
power of our technique, and the analysis speed-ups that it can offer.
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A Proofs

Proof of Theorem 6. Let R be a GFB, pick s0 ∈ MX and set ŝ0 = ψR(s0) ∈ MXR . We
next show that ŝk = ψR(sk) by induction over k ≥ 0. Since the base case k = 0 is true by
construction, we can turn to the induction step. For k ≥ 0, we obtain

ŝk+1 = FR(ŝk) = FR(ψR(sk)) = ψR(F (sk)) = ψR(sk+1),

where the second identity follows from the induction hypothesis, while the third identity
follows from the definition of FR and the fact that R is a GFB. Conversely, if ŝk = ψR(sk)
for all k ≥ 0, we can conclude for k = 0 and arbitrary s0 ∈MX that

ψR(F (s0)) = ψR(s1) = ŝ1 = FR(ŝ0) = FR(ψR(s0)),

thus showing that R is a GFB. J

Proof of Theorem 8. Fix arbitrary GFBs ∼1, . . . ,∼ν⊆ R and let H1, . . . ,Hν be the cor-
responding partitions, i.e., Hi = X∼i . Moreover, let ∼∗:=

(⋃m
i=1 ∼i

)∗ and H∗ := X∼∗ ,
where the asterisk denotes transitive closure of a relation. At last, let xiH∗ ∈ H∗ denote
some representative of H∗ ∈ H∗. With this, pick an arbitrary H∗ ∈ H∗. By construction
of H∗, there exist x0, . . . , xk ∈ X and i0, . . . , ik−1 ∈ {1, . . . , ν} so that {x0, . . . , xk} = H∗,
xk = xiH∗ and xj ∼ij xj+1 for all 0 ≤ j ≤ k − 1. Moreover, for any G∗ ∈ H∗ and 1 ≤ i ≤ ν,
there exist (unique) Gi1, . . . , Gimi ∈ Hi such that

⊎mi
l=1 G

i
l = G∗. Since xj ∼ij xj+1 and Hij

is a GFB, we obtain

⊕
xι∈G∗

fxι =
mij⊕
l=1

⊕
xι∈G

ij
l

fxι

=
mij⊕
l=1

⊕
xι∈G

ij
l

fxι [xj/0⊕][xj+1/(xj ⊕ xj+1)]

=
⊕
xι∈G∗

fxι [xj/0⊕][xj+1/(xj ⊕ xj+1)]

Since {x0, x1, . . . , xk} = H∗ and xk = xiH∗ , an application of the argument for all 0 ≤ j ≤
k − 1 implies that

⊕
xι∈G∗ fxι is equivalent to⊕

xι∈G∗
fxι [xk/0⊕ : xk ∈ H∗, xk 6= xiH∗ ][xiH∗/

⊕
xl∈H∗

xl]

Since the choice of G∗, H∗ ∈ H∗ was arbitrary, we infer that H∗ is a GFB. J

Proof of Theorem 9. Let us assume first that XR is a GFB, pick an arbitrary (xi, xj) ∈ R
and pick the unique C ′ ∈ XR such that xi, xj ∈ C ′. With this, define s′ := s[xi 7→ 0⊕][xj 7→
sxi ⊕ sxj ] for an arbitrary s ∈ MX , where s[xk 7→ b]xk = b and s[xk 7→ b]xl = sxl for all
b ∈M and xl 6= xk. Then, since ⊕ is commutative and associative and because XR is a GFB,
we have that∧

C∈XR

(⊕
xi∈C

fxi(s) =
⊕
xi∈C

fxi(s′)
)
. (5)
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Since the choice of (xi, xj) ∈ R and s ∈ MX was arbitrary, we infer that ΨXRxi,xj is valid.
For the converse, let us assume that ΨXRxi,xj holds true for all (xi, xj) ∈ R and pick any two
s, s′ ∈MX such that∧

C∈XR

(⊕
xi∈C

sxi =
⊕
xi∈C

s′xi

)
(6)

With this, pick for any C ∈ XR some arbitrary representative xiC ∈ C and let X̂ = {xiC :
C ∈ XR} be the set of all representatives. For any (xi, xj) ∈ R, define si→j := s[xi 7→
0⊕, xj 7→ sxi ⊕ sxj ]. With this, the fact that ⊕ is commutative and associative ensures the
existence of a sequence xi1 , xi2 , ..., xik for which ŝ = (((si1→i2)i2→i3) . . .)ik−1→ik is such that∧

C∈XR

(⊕
xi∈C

sxi =
⊕
xi∈C

ŝxi

)
,

ŝxi = 0⊕ for all xi /∈ X̂ and ŝxiC =
⊕
xi∈C

sxi for all C ∈ XR. Since ΨXRxil ,xil+1
is valid for all

1 ≤ l ≤ k − 1, we obtain∧
C∈XR

(⊕
xi∈C

fxi(s) =
⊕
xi∈C

fxi(ŝ)
)
.

A similar argument for s′ ensures that there is an ŝ′ such that ŝ′xi = 0⊕ for all xi /∈ X̂,
ŝ′xiC

=
⊕
xi∈C

s′xi for all C ∈ XR and

∧
C∈XR

(⊕
xi∈C

s′xi =
⊕
xi∈C

ŝ′xi

)
,

∧
C∈XR

(⊕
xi∈C

fxi(s′) =
⊕
xi∈C

fxi(ŝ′)
)
.

Thanks to (6), we infer that ŝ = ŝ′. This, in turn, implies the desired relation (5), thus
showing that XR is a GFB if and only if ΨXRxi,xj is valid for all (xi, xj) ∈ R. J

Proof of Theorem 10. Pick the largest (i.e., coarsest) GFB H∗ that refines XR using The-
orem 8. With this, set H0 := XR and define for all k ≥ 0 and H ∈ Hk

Rk(H) := {(xi, xj) ∈ H ×H : xi 6= xj ⇒ ΨHkxi,xj ∧ΨHkxj ,xi}

Hk+1 :=
⋃

H∈Hk

H/R∗k(H),

where R∗k(H) denotes the transitive closure of Rk(H). By construction, Rk(H) is reflexive
and symmetric, thus implying

⊕
xi∈H

fxi(s) =
⊕
xi∈H

fxi(s̃) for all s ∈MX , H ∈ Hk, where

s̃ = s[xj 7→ 0⊕ : xj /∈ X̂k+1][xiC′ 7→
⊕
xj∈C′

sxj : C ′ ∈ Hk+1]

and xiC ∈ C is a representative of class C ∈ Hk+1, while X̂k+1 = {xiC : C ∈ Hk+1}. (Note
that H ∈ Hk, while C ∈ Hk+1 and X̂k+1 is defined using Hk+1.) This implies that Rk is
transitive. Indeed, for any (xi, xj), (xj , xk) ∈ Rk and s′ ∈MX , the previous equation ensures
for state s := s′[xi 7→ 0⊕, xk 7→ s′xi ⊕ s

′
xk

] and any H ∈ Hk that⊕
xi∈H

fxi(s) =
⊕
xi∈H

fxi(s̃′) =
⊕
xi∈H

fxi(s̃′′) =
⊕
xi∈H

fxi(s̃′′′),
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where

s̃′=s[xl 7→0⊕ : xl /∈ X̂k+1][xiC′ 7→
⊕
xj∈C′

sxj : C ′ ∈ Hk+1],

s̃′′=s′[xl 7→0⊕ : xl /∈ X̂k+1][xiC′ 7→
⊕
xj∈C′

s′xj : C ′ ∈ Hk+1],

s̃′′′=s′[xi 7→0⊕, xj 7→0⊕, xk 7→s′xi ⊕ s
′
xj ⊕ s

′
xk

].

Hence, R∗k = Rk and the expression H/R is indeed well-defined in Algorithm 1. Further,
a proof by induction over k ≥ 1 shows that a) H∗ is a refinement of Hk and b) Hk is a
refinement of Hk−1. Since H∗ is a refinement of any Hk, it holds that H∗ = Hk if Hk is a
GFB partition. Since X is finite, b) allows us to fix the smallest k ≥ 1 with Hk = Hk−1.
This, in turn, implies that Hk−1 is a GFB. To see the complexity statement, we note that the
algorithm can perform at most |X| refinements, while each iteration compares O(|X|2) pairs.
For the decidability, instead, we first note that the finiteness of M ensures the finiteness of
⊕ ⊆M×M and any fxi ⊆MX ×M. Hence, checking∧

C∈H

(⊕
xk∈C

fxk =
⊕
xk∈C

fxk [xi/0⊕][xj/(xi ⊕ xj)]
)

amounts to a finite number of checks over finite sets and is thus decidable. J

Proof of Theorem 13. See proof of Theorem 15. J

Proof of Lemma 14. We start by noting that ψR(vx1 , vx2) = log(vx1) + log(vx2) is an exact
lumping because ∂tψR(v) = (v−1

x1
, v−1
x2

) · (∂tvx1 , ∂tvx2)T = ψR(v). At the same time, the ODE
discretization of the model is

fx1 = x1 + τx1 log(x2), fx2 = x2 + τx2 log(x1).

Writing h = τx1x2 log(x1x2) + τ2x1x2 log(x1) log(x2) for convenience, we observe that

log(fx1)+log(fx2)= log(fx1fx2) = log
(
x1x2 + h

)
= log(x1x2) + (∂ log)(x1x2)h+ (∂2 log)(x1x2)h

2

2 +O(τ3)

= log(x1x2) + h

x1x2
− h2

2x2
1x

2
2

+O(τ3)

= log(x1x2) + τ log(x1x2) + τ2 log(x1) log(x2)− τ2 1
2 log(x1x2)2+O(τ3).

Here, O refers to big O notation from numerical analysis, while the third identity follows from
Taylor’s theorem and from ∂ log(x) = x−1 and ∂2 log(x) = −x−2. Since the higher-order
term τ2 log(x1) log(x2) cannot be expressed in terms of log(x1x2), we conclude that XR is
not a GFB. J

Proof of Theorem 15. To improve readability, we write ψ instead of ψR in the present
proof. Since ⊕ is twice differentiable by assumption, so is ψ = (ψH)H∈XR . For any H ∈ XR,
Taylor’s theorem thus ensures

ψH(F (s)) = ψH(s+ τΦ(s))
= ψH(s) + (∂sψH)(s+ τΦ(s)) · τΦ(s) +O(τ2)
= ψH(s) + τ · (∂sψH)(s+ τΦ(s)) · Φ(s) +O(τ2)
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We begin by assuming that ψ is an exact lumping. Then, with ∂tv(t) = Φ(v(t)), the
derivative of t 7→ ψH(v(t)) can be written as a function of

(
ψC(v(t))

)
C∈XR

by [46]. Since
v(0) ∈ RX can be chosen arbitrarily, there is thus a function ℘H such that ℘H(ψ(s)) =
(∂sψH)(s+ τΦ(s)) · Φ(s) for all s ∈ RX . Overall, we conclude for all s ∈ RX

ψH(F (s)) = ψH(s) + τ · ℘H(ψ(s)) +O(τ2)

Since H ∈ H can be chosen arbitrarily, following the argumentation from the proof of
Theorem 9, we infer that for all (xi, xj) ∈ R with xi 6= xj formula ΨXRxi,xj is valid up to O(τ2).
For the converse, let us assume that for all (xi, xj) ∈ R with xi 6= xj formula ΨXRxi,xj is valid
up to O(τ2). Then, Taylor’s theorem yields as before

ψH(F (s)) = ψH(s) + τ · (∂sψH)(s+ τΦ(s)) · Φ(s) +O(τ2)

With this and the validity of the aforementioned ΨXRxi,xj , the argumentation from the proof
of Theorem 9 ensures the existence of functions (℘H)H∈XR over RXR such that

ψH(F (s)) = ψH(s) + τ · ℘H(ψ(s)) +O(τ2)

for all H ∈ XR and s ∈ RX . Hence, with ∂tv(t) = Φ(v(t)), the derivative of t 7→ ψH(v(t))
can be written as a function of

(
ψC(v(t))

)
C∈XR

. Since v(0) ∈ RX can be chosen arbitrarily,
we obtain that ψ is an exact lumping. This completes the proof of Theorem 15. We next
turn to the proofs of 1) and 2) of Theorem 13. For 1), we note that ΨXRxi,xj is valid up to
O(τ2) for all (xi, xj) ∈ R when R is a GFB. Instead, for 2) we observe that for a linear ψR
there are no higher-order terms, i.e., O(τ2) = 0. This two observations, combined with the
foregoing discussion, yield statements 1) and 2). J

Proof of Corollary 17. Set ⊕ = + in Theorem 13. J

Proof of Corollary 18. The vector of transient probabilities of the Markov chain at time
t ≥ 0 satisfies the forward Kolmogorov equations ∂tπ(t) = QTπ(t). Moreover, by [12], an
equivalence relation R over X is an ordinary lumpability if and only if R is an FDE the
forward Kolmogorov equations. With this, Corollary 17 yields the equivalence of 1) and 2).
The equivalence of 2) and 3), instead, is a well-known fact [8]. J
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