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Abstract7

We reprove the countable splitting lemma by adapting Nawrotzki’s algorithm which produces a8

sequence that converges to a solution. Our algorithm combines Nawrotzki’s approach with taking9

finite cuts. It is constructive in the sense that each term of the iteratively built approximating10

sequence as well as the error between the approximants and the solution is computable with finitely11

many algebraic operations.12
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1 Explanation of what is going on ...21

Given a measure µ on a product space
∏
i∈I Xi, the j-th marginal µj of µ is the push-forward22

of µ under the j-th canonical projection πj :
∏
i∈I Xi → Xj . Explicitly, this is23

µj(A) := µ
(
π−1
j (A)

)
24

for all A ⊆ Xj with π−1
j (A) being measureable.25

In his fundamental paper [21] Strassen investigated the existence of measures on a product26

X × Y which have prescribed marginals and satisfy additional constraints of a certain form.27

The result stated in Theorem 1 below is a corollary of [21, Theorem 11] and known as28

Strassen’s theorem on stochastic domination. Curiously, it is not even explicitly stated in29

Strassen’s paper, but only mentioned in one sentence. We state a slightly more general30

variant taken from [20, Corollary 7]1. To formulate it, we need some notation.31

Let X be a Hausdorff space, and let 4 be a partial order on X which is closed as a subset32

of X ×X. A subset A ⊆ X is upward closed w.r.t. 4, if33

∀x ∈ X, y ∈ A. y 4 x⇒ x ∈ A.34

For two positive Borel measures µ, ν on X we write µ � ν, if for all upward closed Borel35

sets A ⊆ X it holds that µ(A) ≤ ν(A).36

1 A different proof can be found in [16].
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1:2 Constructive Nawrotzki algorithm

I Theorem 1. Let X be a Hausdorff space, let 4 be a closed partial order on X, and let µ and37

ν be two probability (Borel-) measures on X. If µ � ν, then there exists a probability (Borel-)38

measure Λ on X ×X which has the marginals µ and ν, and whose support is contained in 4,39

i.e. there exists a subset of 4 which has Λ-measure 1.40

An important particular case of Theorem 1 is when the base space X is finite or countable41

with the discrete topology. In the finite case this result is known as the splitting lemma [11,42

Theorem 4.10], and the latter is what the term “countable splitting lemma” refers to.43

Over the years such results were established in different variants and on different levels of44

generality. For example: Strassen’s original theorem [21] is proven for Polish spaces, [14] for45

completely regular spaces, [20] for Hausdorff spaces, [17] for probability contents instead of46

measures, [15] for normal measure spaces under finiteness assumptions on 4, [6] for measures47

with values in vector lattices under restrictions on 4, [5] for measure spaces where solutions48

are only required to have the given marginals up to equivalence of measures, [8] for operator49

valued measures, [9] for products of finitely many Polish spaces and a different proof than50

Strassen, [13] for Polish spaces adding some further equivalences. Some predecessors of51

Strassen’s work are [15, 19]. A recent line of research where solutions are only required to52

have the given marginal up to some error is followed in [10] and related papers.53

Theorem 1 plays an important role in probability theory and has applications in various54

areas. For example, it prominently occurs in finance mathematics, e.g. [4, 7], or in computer55

science, e.g. [3, 1, 2, 10, 11, 12].56

The proof of Theorem 1 relies in general on a rather heavy analytic machinery, in57

particular, on theorems exploiting compactness properties. If X is finite, a required solution58

Λ can – naturally – be found by an algorithm which terminates after finitely many steps.59

This fact can be based on various reasoning. For example on elementary manipulations with60

inequalities, as e.g. in [15, §3], or combinatorial results like the max-flow min-cut theorem or61

the subforest lemma, as e.g. in [18] or [11, Theorem 4.10].62

In the present exposition we deal with the countable discrete case. Our aim is to give a63

recursive algorithm which produces a sequence (∆N )N∈N of (discrete) probability measures64

on X ×X such that65

1. each term of the sequence is computable from the inital data µ, ν with a finite number of66

algebraic operations;67

2. the sequence (∆N )N∈N converges to a solution Λ in the `1-norm on X ×X, in particular68

it converges pointwise;69

3. the speed of pointwise convergence can be controlled in a computable way.70

To explain our contribution, it is worthwhile to revisit the presently availabe proofs for the71

countable discrete case. First, specialising the general proof(s) of Theorem 1 obviously does72

not lead to an algorithm, since tools like e.g. the Banach-Alaoglu Theorem are used. More73

interesting are the arguments given in the papers of Kellerer [15, §4] and Nawrotzki [19].74

Both are non-constructive, but for different reasons.75

Kellerer’s approach is to reduce to the finite cases. Given µ, ν on a countable set, he76

produces appropriately cut-off data µN , νN , N ∈ N, and solves the problem for those.77

This gives a measure ΛN on X, which solves the problem up to the index N . Each78

measure ΛN can be computed in finitely many steps. Sending the cut-off point N to79

infinity leads to existence of a solution for the full data µ, ν. The masses of the measures80

ΛN may oscillate, and therefore the sequence (ΛN )N∈N need not be convergent. However,81

each accumulation point of the sequence (ΛN )N∈N will be a solution.82

What makes the method non-constructive is that accumulation points exist by compactness83

(in this case applied in the form of the Heine-Borel Theorem).84
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Nawrotzki’s approach is to produce a sequence (ΛN )N∈N, which does not necessarily85

solve the problem on any finite section, but still converges to a solution. His construction86

ensures that the masses of the measures ΛN are nonincreasing on points of the diagonal87

and nondecreasing off the diagonal. This ensures that passing to subsequences is not88

necessary.89

What makes the method non-constructive is that defining the measures ΛN requires to90

evaluate sums of infinite series and infima of infinite sets of real numbers.91

Our idea to produce (∆N )N∈N with 1.–3. above, is to combine the approaches: we apply92

Nawrotzki’s algorithm to appropriately truncated sequences to ensure computability, and93

control the error which is made by passing to cut-off’s to ensure convergence.94

2 Nawrotzki’s algorithm95

In [19], which preceeds the work of Strassen, Nawrotzki proved a discrete version of Strassen’s96

theorem. In our present language his result reads as follows.97

I Theorem 2. Let µ = (µn)n∈N and ν = (νn)n∈N be sequences of real numbers, such that98

∀n ∈ N. µn ≥ 0 ∧ νn ≥ 0 and
∑
n∈N

µn =
∑
n∈N

νn = 1, (1)99

Moreover, let 4 be a partial order on N.100

If it holds that101

∀R ⊆ N upwards closed w.r.t. 4.
∑
n∈R

µn ≤
∑
n∈R

νn, (2)102

then there exists an infinite matrix Λ = (λn,m)n,m∈N of real numbers, such that103

∀n,m ∈ N. λn,m ≥ 0 and
∑
n,m∈N

λn,m = 1, (3)104

∀n,m ∈ N. λn,m 6= 0⇒ n 4 m, (4)105

∀n ∈ N.
∑
m∈N

λn,m = µn, (5)106

∀m ∈ N.
∑
n∈N

λn,m = νm. (6)107

108

In this section we present Nawrotzki’s argument in a structured way including all details. This109

provides an in-depth understanding of his work, and this is necessary to make appropriate110

adaption to the algorithm later on (in Section 3).111

I Remark 3. Before we dive into the formulas and proofs, which are a bit technical and112

lengthy, let us give an intuition for what is going to happen.113

Assume we are given data µn, νm satisfying Equations (1) and (2) and a (probably bad)114

approximation of a solution λn,m that satisfies Equations (3) and (4), as well as Equation (5).115

Note that achieving correctness of one marginal, i.e. satisfying Equation (5), is very easy; for116

example already the diagonal matrix with µn’s on the diagonal will satisfy this.117

If the column sums do not give the correct results as required by Equation (6), it must be118

that some of them are larger than the target value and some of them are smaller since the total119

sum is always 1. Now we want to modify the values λn,m to improve the approximation, i.e.,120

make the error in Equation (6) smaller while retaining all other properties. Most importantly,121

we have to ensure that Equation (2), also known as stochastic dominance, is inherited. In122

addition, we want to make the modification in such a way that:123

CALCO 2021



1:4 Constructive Nawrotzki algorithm

1. At each place (n,m) entries change monotonically when repeating the step in the algo-124

rithm. This is achieved by having diagonal entries nonincreasing and off-diagonal entries125

nondecreasing. This will guarantee existence of a limit.126

2. Make sure that the pattern of which column sums are too large and which are too small is127

inherited with exception that some column sums may become correct. This will guarantee128

that the algorithm can proceed appropriately.129

The algorithm proceeds in steps. In each step exactly two values of the matrix change: one130

at the diagonal at position (n, n) and another in the same row at position (n,m) such that131

Equation (6) fails for n and m, as pictured below. The new values are λ′n,n = λn,n − α and132

λ′n,m = λn,m + α, where α is chosen such that still λ′∗,n ≥ νn, λ′∗,m ≤ νm.133

In the picture, filled circles indicate those points where our approximation has nonzero134

entries, circled dots mark the changes made by one step of the algorithm, and α > 0 is the135

correction term whose exact definition (see Definition 7) is taylor made so that the above136

explained requirements are met.137

n-th
column

m-th
column

N× N •

•

• •

�
λn,n − α

�
λn,m + α

• •

• •

λ∗,n > νn λ∗,m < νm

138

The next result, Proposition 5, is the first crucial ingredient to Nawrotzki’s algorithm (out of139

two; the second is Proposition 10 further below). It will ensure that in the limit a solution is140

obtained. To formulate it, we need additional notation.141

I Definition 4. Let 4 be a partial order on N. For each (n,m) ∈ N × N with n ≺ m, we142

denote143

Rn,m :=
{
R ⊆ N | n /∈ R,m ∈ R,R upward closed w.r.t. 4

}
.144

Note that Rn,m is always nonempty. For example, we have145

{l ∈ N | m 4 l} ∈ Rn,m.146

I Proposition 5. Assume that µ, ν, and 4, satisfy Equation (1) and Equation (2). If for147
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each pair (n,m) ∈ N× N with n ≺ m at least one of148

µn ≤ νn, (7)149

µm ≥ νm, (8)150

inf
R∈Rn,m

∑
l∈R

(νl − µl) = 0, (9)151

152

holds, then µ = ν.153

Note here that all series in Equation (9) converge absolutely and that by Equation (2) the154

infimum in Equation (9) is nonnegative. Moreover, in an algorithm acting as explained in155

Remark 3 above (and defined in precise mathematical terms in Definition 7 below), using156

Rn,m instead of all upwards closed sets is sufficient to retain Equation (2). This is because157

for upwards closed sets which are not in Rn,m, Equation (2) is trivially inherited.158

In the proof of Proposition 5, we use the following simple fact.159

I Lemma 6. Assume that µ, ν, and 4, satisfy Equation (1) and Equation (2). Further, let160

R1, R2, . . . be a (finite or infinite) sequence of upward closed (w.r.t. 4) subsets of N, and set161

R :=
⋃
k

Rk.162

Then R is upward closed, and163 ∑
l∈R

(νl − µl) ≤
∑
k

∑
l∈Rk

(νl − µl).164

Proof. Since |νl − µl| ≤ νl + µl, the series on the left side converges absolutely. Hence, we165

may rearrange summands without changing its value. Now write R as the disjoint union166

R =
⋃̇

k
R′k167

where168

R′k := Rk \
⋃
j<k

Rj .169

Then170 ∑
l∈R

(νl − µl) =
∑
k

∑
l∈R′

k

(νl − µl).171

For each k we have172 ∑
l∈Rk

(νl − µl) =
∑
l∈R′

k

(νl − µl) +
∑

Rk∩
⋃

j<k
Rj

(νl − µl).173

The set Rk ∩
⋃
j<k Rj is upward closed, and hence the second summand on the right side is174

nonnegative. This shows that175 ∑
l∈R′

k

(νl − µl) ≤
∑
l∈Rk

(νl − µl)176

for all k. J177

CALCO 2021



1:6 Constructive Nawrotzki algorithm

Proof of Proposition 5. It is enough to show that µn ≤ νn for all n ∈ N. Assume towards a178

contradiction that there exists n ∈ N with µn > νn, and fix one with this property. Moreover,179

choose ε > 0 small enough, say,180

ε := 1
3(µn − νn).181

By the assumption of the proposition we know that for each m ∈ N with m � n at least one182

of183

µm ≥ νm,184

infR∈Rn,m

∑
l∈R(νl − µl) = 0,185

must hold.186

Consider the set where the second case takes place187

H :=
{
m ∈ N | n ≺ m, inf

R∈Rn,m

∑
l∈R

(νl − µl) = 0
}
.188

If H = ∅, it is easy to reach a contradiction. Namely, if µm ≥ νm for all m � n, then189 ∑
m<n

µm >
∑
m<n

νm,190

and this contradicts Equation (2).191

If H 6= ∅, we argue as follows. For each m ∈ H choose Rm ∈ Rn,m, such that192 ∑
l∈Rm

(νl − µl) ≤
ε

2m ,193

and set R :=
⋃
m∈H Rm. Then H ⊆ R, n /∈ R, and194 ∑

l∈R

(νl − µl) ≤
∑
m∈H

∑
l∈Rm

(νl − µl) ≤
∑
m∈H

ε

2m ≤ 2ε.195

Consider the upward closed set196

R′ := R ∪ {l ∈ N | n ≺ l}.197

If l ∈ R′ \R, then n ≺ l and l /∈ H. Thus we must have µl ≥ νl. From this we see that198

0 ≤
∑
l∈R′

(νl − µl) =
∑
l∈R

(νl − µl) +
∑

l∈R′\R

(νl − µl) ≤
∑
l∈R

(νl − µl) ≤ 2ε.199

The set R′ ∪ {n} is also upward closed. Using the above estimate, and recalling that n /∈ R′,200

we reach the contradiction201

0 ≤
∑

l∈R′∪{n}

(νl − µl) =
∑
l∈R′

(νl − µl) + (νn − µn) ≤ 2ε+ (νn − µn) = 1
3(νn − µn) < 0.202

J203

Nawrotzki’s algorithm for the proof of Theorem 2 proceed in three steps:204

1. Start with the diagonal matrix built from µ.205

2. Iteratively modify this matrix in such a way, that the set of all points (n,m) where all of206

Equation (7)–Equation (9) fail (for certain modified sequences), gets smaller in each step.207

3. Pass to the limit, so to reach a situation where Proposition 5 applies.208
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The single steps of the recursive process 2. are realised by maps which act on `1(N×N). To209

define those maps, we first introduce an abbreviation for row- and column sums of a matrix.210

Given Λ = (λn,m)n,m∈N ∈ `1(N× N), we denote211

λ∗,m :=
∑
n∈N

λn,m, λn,∗ :=
∑
m∈N

λn,m.212

Note that these series converge absolutely since Λ ∈ `1(N× N).213

I Definition 7. Let ν = (νn)n∈N ∈ `1(N) and (n,m) ∈ N× N. We define maps214

ανn,m : `1(N× N)→ [0,∞), Φνn,m : `1(N× N)→ `1(N× N).215

For Λ ∈ `1(N× N) set216

ανn,m(Λ) := min
{
λ∗,n − νn, νm − λ∗,m, inf

R∈Rn,m

∑
l∈R

(νl − λ∗,l)
}
,217

if n 4 m and this minimum is positive, and set ανn,m := 0 otherwise.218

For Λ ∈ `1(N× N) let Φνn,m(Λ) be the matrix with the entries219

[
Φνn,m

]
l,k

(Λ) :=


λl,k − ανn,m(Λ) if (l, k) = (n, n),
λl,k + ανn,m(Λ) if (l, k) = (n,m),
λl,k otherwise.

220

Note that Φν
n,m is well-defined, since ανn,m 6= 0 implies that n 6= m, and since it is obvious221

that Φνn,m(Λ) is again summable.222

Let us collect some more obvious properties of the transformations Φνn,m.223

I Remark 8. For each ν ∈ `1(N) and (n,m) ∈ N× N, the following statements hold.224

1. supp Φνn,m(Λ) ⊆
(

supp Λ
)
∪ {(n, n), (n,m)},225

2. ∀l ∈ N.
[
Φνn,m(Λ)

]
l,∗

= λl,∗,226

3. ∀l ∈ N.
[
Φνn,m(Λ)

]
∗,l

=


λ∗,l − ανn,m(Λ) if l = n,

λ∗,l + ανn,m(Λ) if l = m,

λ∗,l otherwise.
227

Having ανn,m(Λ) = 0 just means that at the point (n,m) one of Equation (7)–Equation (9)228

holds for the sequences (λ∗,n)n∈N and (νn)n∈N. Moreover, in this case, Φνn,m does not change229

Λ. We are interested to see what happens if ανn,m(Λ) > 0.230

I Definition 9. Let ν ∈ `1(N) and Λ ∈ `1(N× N). Then we set231

S(Λ) :=
{

(n,m) ∈ N× N | ανn,m(Λ) > 0
}
.232

Moreover, we denote by π1(S(Λ)) and π2(S(Λ)) the projections of S(Λ) onto the first and233

second, respectively, component.234

To avoid bulky notation, we do not explicitly notate the dependency on ν. Moreover, observe235

that S(Λ) is contained in 4 and does not intersect the diagonal, in fact,236

π1(S(Λ)) ∩ π2(S(Λ)) = ∅.237

In the next proposition we show that Φνn,m preserves several relevant properties and indeed238

shrinks the set S(Λ).239

CALCO 2021



1:8 Constructive Nawrotzki algorithm

I Proposition 10. Let ν = (νn)n∈N ∈ `1(N), Λ ∈ `1(N× N), and assume that240

∀n,m ∈ N. λn,m ≥ 0 and
∑
n,m∈N

λn,m = 1, (10)241

∀n ∈ π1(S(Λ)). λ∗,n = λn,n. (11)242

∀R ⊆ N upward closed w.r.t. 4.
∑
l∈R

λ∗,l ≤
∑
l∈R

νl, (12)243

244

Further, let (n′,m′) ∈ N× N, and assume that ανn′,m′(Λ) > 0. Then245

1. Φνn′,m′(Λ) satisfies Equation (10), Equation (11), and Equation (12),246

2. S
(
Φνn′,m′(Λ)

)
⊆ S(Λ) \ {(n′,m′)}.247

Proof. To shorten notation, we write248

Λ′ = (λ′n,m)n,m∈N := Φνn′,m′(Λ).249

We start with showing that Λ′ satisfies Equation (10) and Equation (12). Let (n,m) 6= (n′, n′).250

Then λ′n,m ≥ λn,m and hence is nonnegative. For (n,m) = (n′, n′) we use (11) to obtain251

λ′n′,n′ = λn′,n′ − ανn′,m′(Λ) = λ∗,n′ − ανn′,m′(Λ) ≥ νn′ ≥ 0.252

Obviously, applying Φνn′,m′ does not change the total sums of the entries of a matrix. Thus253 ∑
n,m∈N

λ′n,m =
∑
n,m∈N

λn,m = 1.254

We see that Equation (10) holds.255

Let R ⊆ N be upward closed. If R /∈ Rn′,m′ , then256 ∑
l∈R

λ′∗,l ≤
∑
l∈R

λ∗,l ≤
∑
l∈R

νl.257

Next, for R ∈ Rn′,m′258 ∑
l∈R

λ′∗,l =
∑
l∈R

λ∗,l + ανn′,m′(Λ), (13)259

and from this we find260 ∑
l∈R

λ′∗,l =
∑
l∈R

λ∗,l + ανn′,m′(Λ) ≤
∑
l∈R

λ∗,l +
∑
l∈R

(νn − λ∗,l) =
∑
l∈R

νl.261

Thus Equation (12) holds.262

Now we come to the proof of 2.. This is the major part of the argument.263

In the first step we show that (n′,m′) /∈ S(Λ′). We make a case distinction according to264

which term is the minimum in the definition of ανn′,m′(Λ).265

Case ανn′,m′(Λ) = λ∗,n′ − νn′ :266

Then λ′∗,n′ = νn′ , and hence n′ /∈ π1(S(Λ′)). In particular, (n′,m′) /∈ S(Λ′).267

Case ανn′,m′(Λ) = νm′ − λ∗,n′ :268

Then λ′∗,m′ = νm′ , and hence m′ /∈ π2(S(Λ′)). In particular, (n′,m′) /∈ S(Λ′).269
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Case ανn′,m′(Λ) = infRn′,m′

∑
l∈R(νl − λ∗,l):270

Recalling Equation (13), we find271

inf
R∈Rn′,m′

∑
l∈R

(νl − λ′∗,l) = inf
R∈Rn′,m′

∑
l∈R

[
(νl − λ∗,l)− ανn′,m′(Λ)

]
= 0.272

Thus also in this case (n′,m′) /∈ S(Λ′).273

In the second step, we show that S(Λ′) ⊆ S(Λ). Assume towards a contradiction that274

(n,m) ∈ S(Λ′) \ S(Λ). Explicitly this means that275

n ≺ m ∧ λ′∗,n > νn ∧ λ′∗,m < νm ∧ inf
R∈Rn,m

∑
l∈R

(νl − λ′∗,l) > 0276

∧
[
λ∗,n ≤ νn ∨ λ∗,m ≥ νm ∨ inf

R∈Rn,m

∑
l∈R

(νl − λ∗,l) = 0
]

277

278

We distinguish cases according to the disjunction in the square bracket.279

Case λ∗,n ≤ νn:280

The sum of the n-th column increases, and thus we must have n = m′. This implies281

λ′∗,n = λ′∗,m′ = λ∗,m′ + ανn′,m′(Λ) ≤ νm′ = νn,282

which contradicts the second term in the conjunction.283

Case λ∗,m ≥ νm:284

The sum of the m-th column decreases, and thus we must have m = n′. This implies285

λ′∗,m = λ′∗,n′ = λ∗,n′ − ανn′,m′(Λ) ≥ νn′ = νm,286

which contradicts the third term in the conjunction.287

Case infR∈Rn,m

∑
l∈R(νl − λ∗,l) = 0:288

Choose R′ ∈ Rn,m such that289 ∑
l∈R′

(νl − λ∗,l) < inf
R∈Rn,m

∑
l∈R

(νl − λ′∗,l).290

Then, in particular, the value of the sum over all l ∈ R′ decreases, and we must have291

n′ ∈ R′ and m′ /∈ R′. Since R′ is upward closed and n′ ≺ m′, this is a contradiction.292

The proof of 2. is complete.293

It remains to deduce Equation (11). Let n ∈ π1(S(Λ′)). Then also n ∈ π1(S(Λ)), and294

therefore n 6= m′ and λ∗,n = λn,n. From the first property we obtain that the n-th column is295

modified at most at its diagonal entry, and now the second implies that λ′∗,n = λ′n,n. J296

Next, we investigate iterative application of maps Φν
n,m. Start with ν ∈ `1(N), Λ(0) ∈297

`1(N× N), and a sequence ((nk,mk))k≥1 of points in N× N. From this data, we built the298

sequence (Λ(k))k∈N where299

Λ(k) :=
[
Φνnk,mk

◦ · · · ◦ Φνn1,m1

](
Λ(0)). (14)300

It turns out that, in the situation of Theorem 2, sequences of this form converge. In fact,301

they do so because of a very simple reason, namely, monotonicity.302
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I Lemma 11. Let (Λ(k))k∈N be a sequence in `1(N× N), such that303

sup
k∈N
‖Λ(k)‖1 <∞, ∀n,m, k ∈ N. λ(k)

n,m ≥ 0,304

and that there exists a partition N× N = A∪̇B such that (λ(k)
n,m)k∈N is nondecreasing for all305

(n,m) ∈ A and nonincreasing for all (n,m) ∈ B.306

Then the limit Λ := limk→∞ Λ(k) exists in the `1-norm.307

Proof. Each of the sequences (λ(k)
n,m)k∈N is monotone and bounded, hence convergent. Denote308

λn,m := limk→∞ λ
(k)
n,m. We have to show that the pointwise limit Λ = (λn,m)n,m∈N is actually309

attained in the `1-norm. To this end we split the corresponding sum according to the given310

partition.311

For each (n,m) ∈ A the sequence (λ(k)
n,m)k∈N is nondecreasing, and hence the monotone312

convergence theorem yields313 ∑
(n,m)∈A

λn,m = lim
k→∞

∑
(n,m)∈A

λ(k)
n,m ≤ sup

k∈N
‖Λ(k)‖1 <∞.314

Since λn,m ≥ λn,m − λ(k)
n,m ≥ 0, we may now refer to the bounded convergence theorem to315

obtain that316

lim
k→∞

∑
(n,m)∈A

∣∣λ(k)
n,m − λn,m

∣∣ = 0.317

For each (n,m) ∈ B and k ∈ N we have318

λ(0)
n,m ≥ λ(k)

n,m ≥ λ(k)
n,m − λn,m ≥ 0.319

Since
∑

(n,m)∈B λ
(0)
n,m <∞, the bounded convergence theorem applies, and we find that320

lim
k→∞

∑
(n,m)∈B

∣∣λ(k)
n,m − λn,m

∣∣ = 0.321

J322

I Corollary 12. Assume that Λ(0) satisfies Equation (10) and Equation (11), let ((nk,mk))k≥1323

be any sequence, and let (Λ(k))k∈N be defined by Equation (14). Then the limit324

Λ := lim
k→∞

Λ(k)
325

exists w.r.t. the `1-norm.326

Proof. Since ανn,m(Λ) is always nonnegative, a partition of N×N required to apply Lemma 11327

is obtained by taking the diagonal as the set A. J328

Now we show that, when passing to a limit, the set S(Λ) can be controlled.329

I Lemma 13. Let (Λ(k))k∈N be a sequence in `1(N × N) which converges in the `1-norm,330

and denote Λ := limk→∞ Λ(k). Then331

S(Λ) ⊆
⋃
N∈N

⋂
k≥N

S(Λ(k)).332
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Proof. Let (n,m) ∈ S(Λ), and set ε := 1
2α

ν
n,m(Λ). Choose N ∈ N such that333

∀k ≥ N. ‖Λ(k) − Λ‖1 ≤ ε.334

Then for all k ≥ N335

λ
(k)
∗,n ≥ λ∗,n − ε ≥ νn, λ

(k)
∗,m ≤ λ∗,m + ε ≤ νm,336

and for all R ∈ Rn,m337 ∑
l∈R

(
νl − λ(k)

∗,l
)
≥
∑
l∈R

(νl − λ∗,l)− ε ≥ ε > 0338

Thus (n,m) ∈ S(Λ(k)). J339

We have collected all the neccessary tools needed for the proof of Theorem 2.340

Proof of Theorem 2. Let µ, ν, and 4, be given, and assume that Equation (1) and Equa-341

tion (2) hold.342

Let Λ(0) = (λ(0)
n,m)n,m∈N be the diagonal matrix built from µ, i.e.,343

λ(0)
n,m :=

{
µn if n = m,

0 otherwise.
(15)344

Choose a sequence of points ((nk,mk))k≥1 in N × N which covers ≺. For example, every345

enumeration of N× N certainly has this property. Now define Λ(k) by Equation (14) using346

this sequence.347

By Proposition 10, each Λ(k) satisfies Equation (10), Equation (11), and Equation (12).348

Moreover,349

S(Λ(k)) ⊆ S(Λ(0)) \
{

(n1,m1), . . . , (nk,mk)
}
.350

The limit351

Λ = (λn,m)n,m∈N := lim
k→∞

Λ(k)
352

exists in the `1-norm by Corollary 12, and S(Λ) = ∅ by Lemma 13.353

Clearly, Equation (3)–Equation (5) hold for Λ. By virtue of Proposition 10, we may apply354

Proposition 5 with the sequences (λ∗,n)n∈N and (νn)n∈N, and obtain that also Equation (6)355

holds. J356

We refer to the procedure carried out in this proof as Nawrotzki’s algorithm being performed357

along the sequence ((nk,mk))k≥1.358

I Remark 14. For later use, we observe the following fact. Let (Λ(k))k∈N be a sequence359

produced by an application of Nawrotzki’s algorithm. Then off-diagonal elements λ(k)
n,m change360

their value at most once when k runs through N. Namely, only when (n,m) = (nk,mk) and361

it happens that ανn,m(Λ(k−1)) > 0.362
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3 A constructive variant of the algorithm363

Nawrotzki’s proof of Theorem 2 is non-constructive for the following reason:364

The set Rn,m is in general infinite, and its elements themselves are in general infinite.365

Because of this, computing the numbers ανn,m requires to evaluate the sum of infinite series366

and an infimum of an infinite set. Hence, it is not possible to compute any term of the367

sequence (Λ(k))k∈N, which converges to a solution matrix Λ, with a finite number of algebraic368

operations.369

Our aim is to give a proof of Theorem 2 which is more constructive in the following sense.370

I Theorem 15. Let µ, ν,4 be given such that Equation (1) and Equation (2) hold. Then371

there exists a sequence (∆(k))k∈N of matrices in `1(N× N) with the following properties.372

1. Each ∆(k) can be computed from the given data µ and ν by a finite number of algebraic373

operations.374

2. The limit ∆ := limk→∞∆(k) exists in the `1-norm and satisfies Equation (3)–Equation (6).375

As usual we use the notation ∆(k) = (δ(k)
n,m)n,m∈N and ∆ = (δn,m)n,m∈N.376

3. For each fixed (n,m) ∈ N × N with n ≺ m, and for each ε > 0, a number k0 with the377

property that378

∀k ≥ k0. |δ(k)
n,m − δn,m| ≤ ε379

can be computed from the given data µ and ν by a finite number of algebraic operations380

While the speed of pointwise convergence is controlled by the assertion in item 3. (even in a381

constructive way), we have no control of the speed of `1-convergence.382

The idea to prove this theorem is the simplest possible: we consider cut-off data µN , νN383

instead of µ, ν, apply Nawrotzki’s algorithm to the truncated data, and then send the cut-off384

point to infinity. Realising this idea, however, requires some work.385

We start with discussing convergence matters. The error when using cut-off’s instead of386

the full data can be controlled using the following general perturbation lemma.387

I Lemma 16. Let ν, ν̃ ∈ `1(N), Λ, Λ̃ ∈ `1(N× N), and (n,m) ∈ N× N. Then388 ∣∣ανn,m(Λ)− αν̃n,m(Λ̃)
∣∣ ≤ ‖Λ− Λ̃‖1 + ‖ν − ν̃‖1. (16)389

Proof. We have390
391 ∣∣(λ∗,n − νn)− (λ̃∗,n − ν̃n)

∣∣392

≤
∑
l∈N
|λl,n − λ̃l,n| + |νn − ν̃n| ≤ ‖Λ − Λ̃‖1 + ‖ν − ν̃‖1,393

394

and in the same way395

396 ∣∣(λ∗,m − νm)− (λ̃∗,m − ν̃m)
∣∣397

≤
∑
l∈N
|λl,m − λ̃l,m| + |νm − ν̃m| ≤ ‖Λ − Λ̃‖1 + ‖ν − ν̃‖1.398

399

Next let R ⊆ N. Then400

401 ∣∣∣∑
l∈R

(νl − λ∗,l)−
∑
l∈R

(ν̃l − λ̃∗,l)
∣∣∣ ≤402

≤
∑
l∈R

∑
k∈N
|λk,l − λ̃k,l| +

∑
l∈R

|νl − ν̃l| ≤ ‖Λ − Λ̃‖1 + ‖ν − ν̃‖1.403

404
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It follows that405 ∣∣∣∣ inf
(
{λ∗,n− νn, νm − λ∗,m} ∪

{∑
l∈R

(νl − λ∗,l) | R ∈ Rn,m
})

406

− inf
(
{λ̃∗,n − ν̃n, ν̃m − λ̃∗,m} ∪

{∑
l∈R

(ν̃l − λ̃∗,l) | R ∈ Rn,m
})∣∣∣∣407

≤ ‖Λ− Λ̃‖1 + ‖ν − ν̃‖1408
409

This is Equation (16) if n 4 m. Otherwise ανn,m = αν̃n,m(Λ̃) = 0, and the required estimate410

holds trivially. J411

I Corollary 17. Let ν, ν̃ ∈ `1(N), Λ, Λ̃ ∈ `1(N × N), and ((nk,mk))k≥1 be a sequence in412

N× N. Let (Λ(k))k∈N and (Λ̃(k))k∈N be the sequences defined by Equation (14) starting from413

Λ(0) := Λ and Λ̃(0) := Λ̃, respectively. Moreover, set414

ε := ‖Λ− Λ̃‖1 + ‖ν − ν̃‖1.415

Then416

∀k ∈ N. ‖Λ(k) − Λ̃(k)‖1 + ‖ν − ν̃‖1 ≤ 3kε.417

Proof. For k = 0 this is the definition of ε. Then proceed inductively based on the estimate418 ∥∥Φνn,m(Λ)− Φν̃n,m(Λ̃)
∥∥

1 ≤ ‖Λ− Λ̃‖1 + 2|ανn,m(Λ)− αν̃n,m(Λ̃)|,419

which holds for all ν, ν̃,Λ, Λ̃, n,m. J420

Now we turn to computability matters. To settle these, we need one more notation.421

I Definition 18. Let L ⊆ N, and n,m ∈ L with n ≺ m. Then we set422

RLn,m :=
{
R ⊆ L | n /∈ R,m ∈ R,∀k ∈ R, l ∈ L. k 4 l⇒ l ∈ R

}
.423

I Lemma 19. Let ν ∈ `1(N), Λ ∈ `1(N× N), let L ⊆ N, and assume that424

supp ν ⊆ L, supp Λ ⊆ L× L. (17)425

Then426

∀(n,m) /∈ L× L. ανn,m(Λ) = 0, (18)427

∀(n,m) ∈ N× N. supp Φνn,m(Λ) ⊆ L× L, (19)428

∀n,m ∈ L, n ≺ m. inf
R∈Rn,m

∑
l∈R

(νl − λ∗,l) = inf
R∈RL

n,m

∑
l∈R

(νl − λ∗,l). (20)429

430

Proof. The assumption on the supports of ν and Λ shows that431

∀n /∈ L. νn = λ∗,n = 0.432

From this Equation (18), and in turn also Equation (19), follows. Moreover, for every subset433

R ⊆ N434 ∑
l∈R

(νl − λ∗,l) =
∑
l∈R∩L

(νl − λ∗,l).435
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To establish Equation (20), we show that for all n,m ∈ L with n ≺ m436

RLn,m = {R ∩ L | R ∈ Rn,m}.437

The inclusion “⊇” is clear. For the reverse inclusion observe that, for each R ∈ RLn,m, the set438

R′ :=
{
l ∈ N | ∃k ∈ R. k 4 l

}
439

belongs to Rn,m and R′ ∩ L = R. J440

I Corollary 20. Let ν ∈ `1(N) and Λ ∈ `1(N× N) be finitely supported. Then441

1. for each n ∈ N the number λ∗,n is a finite sum, and442

2. for each (n,m) ∈ N× N the infimum in the definition of ανn,m(Λ) is the minimum of a443

finite number of finite sums.444

Proof. We can choose a finite set L ⊆ N such that Equation (17) holds. Then each set RLn,m,445

and also each of its elements, is finite. J446

Proof of Theorem 15. Consider truncated data: for N ∈ N, let µN = (µN ;n)n∈N and447

νN = (νN ;n)n∈N be defined by448

µN ;n :=


µn if n < N,

1−
∑
l<N µl if n = N,

0 if n > N,

νN ;n :=


νn if n < N,

1−
∑
l<N νl if n = N,

0 if n > N.

449

We execute Nawrotzki’s algorithm with the data µN , νN along the enumeration ((nk,mk))k≥1450

of N× N which is defined by running through the scheme451

• • • N× N

• • •

• • • •

452

and dropping all points (n,m) which do not satisfy n ≺ m.453

This provides us with sequences (Λ(k)
N )k∈N, N ∈ N. According to Lemma 19 and454

Corollary 20, we have455

supp Λ(k)
N ⊆ {0, . . . , N} × {0, . . . , N},456

and each Λ(k)
N can be computed by a finite number of algebraic operations.457

Let (Λ(k))k∈N be the sequence obtained by running Nawrotzki’s algorithm along the same458

sequence ((nk,mk))k≥1 but starting with the full data µ, ν. We have459

‖Λ(0) − Λ(0)
N ‖1 = 2

∑
n>N

µn, ‖ν − ν‖1 = 2
∑
n>N

νn,460

and hence461

‖Λ(0) − Λ(0)
N ‖1 + ‖ν − ν‖1 = 2

∑
n>N

(µn + νn) = 2
(

2−
∑
n≤N

(µn + νn)
)

=: εN .462

Corollary 17 applies and leads to the basic estimate463

∀k ∈ N, N ∈ N. ‖Λ(k) − Λ(k)
N ‖1 + ‖ν − ν‖1 ≤ 3kεN . (21)464
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The next step is to define a sequence (∆k)k∈N. This is done as follows: given k ∈ N , choose465

Nk ∈ N with466

εNk
≤ 1
k · 3k ,467

and set ∆k := Λ(k)
Nk

.468

The number Nk can be found in finitely many steps by summing up beginning sections469

of µ and ν. Together with what we already observed above, thus, each ∆k can be computed470

in finitely many steps.471

We know that the limit Λ := limk→∞ Λ(k) exists in the `1-norm and satisfies Equation (3)472

– Equation (6). The basic estimate Equation (21) yields473

‖Λ(k) −∆(k)‖1 ≤
1
k
,474

and we see that also limk→∞∆(k) = Λ in the `1-norm.475

Let (n,m) ∈ N× N with n ≺ m and ε > 0 be given. Define k0 ∈ N as the least integer476

larger or equal to477

max
{1
ε
,
(

max{n,m}
)2
}
.478

Then (n,m) ∈ {(n1,m1), . . . , (nk0 ,mk0)} and for all k ≥ k0479

‖Λ(k) −∆(k)‖1 ≤ ε.480

Now recall Remark 14: the entry λ
(k)
n,m is constant for k ≥ k0. This implies that, forall481

k ≥ k0,482

|λn,m − δ(k)
n,m| = |λ(k)

n,m − δ(k)
n,m| ≤ ‖Λ(k) −∆(k)‖1 ≤ ε.483

The proof of Theorem 15 is complete. J484

References485

1 G. Barthe, T. Espitau, J. Hsu, T. Sato, and P.-Y. Strub. *-liftings for differential privacy.486

In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl, editors, 44th487

International Colloquium on Automata, Languages, and Programming, ICALP 2017, July488

10-14, 2017, Warsaw, Poland, volume 80 of LIPIcs, pages 102:1–102:12. Schloss Dagstuhl -489

Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.ICALP.2017.102.490

2 G. Barthe, T. Espitau, J. Hsu, T. Sato, and P.-Y. Strub. Relational ??\star-liftings for491

differential privacy. Log. Methods Comput. Sci., 15(4), 2019. doi:10.23638/LMCS-15(4:492

18)2019.493

3 G. Barthe, M. Gaboardi, B. Grégoire, J. Hsu, and P.-Y. Strub. Proving differential privacy494

via probabilistic couplings. In Martin Grohe, Eric Koskinen, and Natarajan Shankar, editors,495

Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS496

’16, New York, NY, USA, July 5-8, 2016, pages 749–758. ACM, 2016. doi:10.1145/2933575.497

2934554.498

4 M. Beiglböck and N. Juillet. On a problem of optimal transport under marginal martingale499

constraints. Ann. Probab., 44(1):42–106, 2016. doi:10.1214/14-AOP966.500

5 P. Berti, L. Pratelli, P. Rigo, and F. Spizzichino. Equivalent or absolutely continuous501

probability measures with given marginals. Depend. Model., 3(1):47–58, 2015. doi:10.1515/502

demo-2015-0004.503

CALCO 2021

https://doi.org/10.4230/LIPIcs.ICALP.2017.102
https://doi.org/10.23638/LMCS-15(4:18)2019
https://doi.org/10.23638/LMCS-15(4:18)2019
https://doi.org/10.23638/LMCS-15(4:18)2019
https://doi.org/10.1145/2933575.2934554
https://doi.org/10.1145/2933575.2934554
https://doi.org/10.1145/2933575.2934554
https://doi.org/10.1214/14-AOP966
https://doi.org/10.1515/demo-2015-0004
https://doi.org/10.1515/demo-2015-0004
https://doi.org/10.1515/demo-2015-0004


1:16 Constructive Nawrotzki algorithm

6 E. D’Aniello and J.D.M. Wright. Finding measures with given marginals. Q. J. Math.,504

51(4):405–416, 2000. doi:10.1093/qjmath/51.4.405.505

7 M.H.A. Davis and D.G. Hobson. The range of traded option prices. Math. Finance, 17(1):1–14,506

2007. doi:10.1111/j.1467-9965.2007.00291.x.507

8 S. Friedland, J. Ge, and L. Zhi. Quantum Strassen’s theorem. Infin. Dimens. Anal. Quantum508

Probab. Relat. Top., 23(3):2050020, 29, 2020. doi:10.1142/S0219025720500204.509

9 N. Gaffke and L. Rüschendorf. On the existence of probability measures with given marginals.510

Statist. Decisions, 2(1-2):163–174, 1984.511

10 J. Hsu. Probabilistic couplings for probabilistic reasoning. Phd thesis, University of Pennsylvania,512

2017. URL: https://repository.upenn.edu/edissertations/3017/.513

11 C. Jones. Probabilistic Non-determinism. Phd thesis, University of Edinburgh, 1989.514

12 A. Jung and R. Tix. The troublesome probabilistic powerdomain. In Third Workshop on515

Computation and Approximation (Comprox III) (Birmingham, 1997), volume 13 of Electron.516

Notes Theor. Comput. Sci., page 22. Elsevier Sci. B. V., Amsterdam, 1998.517

13 T. Kamae, U. Krengel, and G.L. O’Brien. Stochastic inequalities on partially ordered spaces.518

Ann. Probability, 5(6):899–912, 1977. doi:10.1214/aop/1176995659.519

14 J. Kawabe. A type of Strassen’s theorem for positive vector measures with values in dual spaces.520

Proc. Amer. Math. Soc., 128(11):3291–3300, 2000. doi:10.1090/S0002-9939-00-05384-3.521

15 H.G. Kellerer. Funktionen auf Produkträumen mit vorgegebenen Marginal-Funktionen. Math.522

Ann., 144:323–344, 1961. doi:10.1007/BF01470505.523

16 H.G. Kellerer. Duality theorems for marginal problems. Z. Wahrsch. Verw. Gebiete, 67(4):399–524

432, 1984. doi:10.1007/BF00532047.525

17 H. König. On the marginals of probability contents on lattices. Mathematika, 58(2):319–323,526

2012. doi:10.1112/S0025579311002427.527

18 V.T. Koperberg. Couplings and matchings. Bachelor thesis, Universiteit Leiden,528

2016. URL: https://www.universiteitleiden.nl/binaries/content/assets/science/mi/529

scripties/koperbergbach.pdf.530

19 K. Nawrotzki. Eine Monotonieeigenschaft zufälliger Punktfolgen. Math. Nachr., 24:193–200,531

1962. doi:10.1002/mana.19620240305.532

20 H.J. Skala. The existence of probability measures with given marginals. Ann. Probab.,533

21(1):136–142, 1993. URL: http://links.jstor.org/sici?sici=0091-1798(199301)21:534

1<136:TEOPMW>2.0.CO;2-I&origin=MSN.535

21 V. Strassen. The existence of probability measures with given marginals. Ann. Math. Statist.,536

36:423–439, 1965. doi:10.1214/aoms/1177700153.537

https://doi.org/10.1093/qjmath/51.4.405
https://doi.org/10.1111/j.1467-9965.2007.00291.x
https://doi.org/10.1142/S0219025720500204
https://repository.upenn.edu/edissertations/3017/
https://doi.org/10.1214/aop/1176995659
https://doi.org/10.1090/S0002-9939-00-05384-3
https://doi.org/10.1007/BF01470505
https://doi.org/10.1007/BF00532047
https://doi.org/10.1112/S0025579311002427
https://www.universiteitleiden.nl/binaries/content/assets/science/mi/scripties/koperbergbach.pdf
https://www.universiteitleiden.nl/binaries/content/assets/science/mi/scripties/koperbergbach.pdf
https://www.universiteitleiden.nl/binaries/content/assets/science/mi/scripties/koperbergbach.pdf
https://doi.org/10.1002/mana.19620240305
http://links.jstor.org/sici?sici=0091-1798(199301)21:1<136:TEOPMW>2.0.CO;2-I&origin=MSN
http://links.jstor.org/sici?sici=0091-1798(199301)21:1<136:TEOPMW>2.0.CO;2-I&origin=MSN
http://links.jstor.org/sici?sici=0091-1798(199301)21:1<136:TEOPMW>2.0.CO;2-I&origin=MSN
https://doi.org/10.1214/aoms/1177700153

	1 Explanation of what is going on ...
	2 Nawrotzki's algorithm
	3 A constructive variant of the algorithm

