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Abstract. A collaborative embedded system is an autonomous compo-
nent of a cyber-physical system which cooperates with other such systems
in order to accomplish a common goal. In this paper, we report on ap-
proaches for the validation of such collaborative embedded systems. We
describe specification methods for hierarchies of goals and targets. Us-
ing model checking of alternating signal temporal logic, we show how to
construct strategies for the satisfaction of goals and targets. For runtime
validation of safety properties, we give a robust monitoring procedure
which can flag potential problems in advance. Our two examples are car
platooning and automated guided vehicles in industrial production. In
the car platooning example, autonomous vehicles collaborate to enable
high-speed driving at short distances. The fleet of transport robots col-
laborates in loading and unloading of production machines.

1 Introduction

The validation of embedded systems is of increasing importance, since we in-
creasingly rely on their correct functioning. It is estimated that every European
citizen on average owns more than 100 such systems. In a single modern car,
there are between 50 and 100 electronic control units (ECU), which provide
various services and driver assistance functions. An ongoing trend is that these
devices are increasingly interconnected. This holds both on the level of tightly
coupled systems, such as the ECU within a vehicle, and on the level of system-
of-systems, such as a group of vehicles. In order to be able to adapt to changing
demands and environments, systems are given more and more autonomy in their
decisions. For example, even a simple robot vacuum cleaner and lawn mower can
navigate autonomously within their dedicated areas. More sophisticated indus-
trial transport robots have complex path planning components, circumventing
obstacles and road blocks. In the railway and automotive domains, autonomous
driving is a major innovation factor.

Autonomous systems can increase their performance, if they join forces and
form collaborative groups. For example, a group of assembly robots in an indus-
trial production cell can collaborate and distribute the required tasks amongst
themselves, to jointly minimize the assembly time. As another example, a group
of autonomous trucks can form a platoon, travelling in close distance to one an-
other in order to minimize fuel consumption. We call such a strategic alliance a



collaborative system group (CSG), and each member of the group a collaborative
embedded system (CES).

A defining criterion of a CSG is that all CES in the group work together to
perform a common function. Thus, they share a common objective, to which each
individual contributes. This is in contrast to competitive behaviour, where two
or more agents have conflicting or even contradictory objectives. As an example
with both cooperation and competition, consider robot soccer as practised in the
annual RoboCup tournament: In each match, the two teams compete, whereas
within each team the robots cooperate.

Even if several CES share a common objective, this does not exclude the
possibility that each system also has individual objectives. In the platooning
example, each vehicle in the platoon may have an individual destination. Con-
flicting objectives may result in an overall behaviour which is hard to predict.
For example, we would not want a car in the middle of a platoon to follow its
own route; however, at the end of a platoon such a behaviour can be acceptable.

Thus, there is a need for design methods which guarantee a reliable and safe
operation of CES in a collaborating group. In this paper, we describe several ap-
proaches for informal and formal specification and validation of CSG objectives.
Starting with two use cases, we describe a stepwise formalization approach for
specifications: Starting from a statement of the system purposes, via the objec-
tives of a collaborating group, to the strategies each collaborative system should
follow. In order to formalize the requirements, we define a temporal specifica-
tion logic as a blend of signal temporal logic and alternating-time temporal logic.
Then, we use model checking and machine learning to synthesise collaboration
strategies. Furthermore, we monitor properties to predict behaviour which might
lead to problems.

The paper is structured as follows: First, we describe our two use cases (Sec-
tion 2). After that (Section 3), we characterize objectives for these systems as
goals and targets. Then, we define our specification logic ASTL* (Section 4).
Subsequently, we show how this logic can be used for strategy synthesis (Sec-
tion 5) and online monitoring (Section 6).

2 Use cases

Our first example is from the automotive domain. Highly automated cars can
collaborate to form a platoon which travels together at high speed in short
distance to one another. This reduces the air resistance for each individual car,
and allows a better use of highway space. Figure 1 depicts the model cars we
designed for this use case.

The model cars recognize their environment via camera, ultrasonic sensors
and wheel encoders. They communicate via WLAN. There are two ECU on
board: The vehicle ECU handles low-level driving functions such as adjusting
the motor speed and steering direction, whereas the advanced driver assistance
ECU is responsible for collaboration, image processing, and other higher-level
functions. The purpose of the collaborative adaptive cruise control (CACC) soft-



Fig. 1. Model cars for platoon driving

ware on this ECU is to control the velocity and trajectory of the vehicles such
that they can safely drive in a platoon.

As our second example, we use a fleet of autonomous, collaborating trans-
port robots in a factory environment. Figure 2 depicts some of the available
robots [ProAnt].

Fig. 2. Transport robots for factory automation

Robots navigate in a production plant, using laser scanners to recognize
their environment. They have a built-in floor map which allows self-localisation
by comparing scan data and map data. In Fig. 3, a typical map from an actual
factory is shown. Robots are only allowed to move in the area enclosed by the
grey area. The current destination of the robot is indicated by a line.

The purpose of the robots is to load and unload production machines. Ma-
chines issue requests for being served, either if they are in need for new input
material, or if the output buffer of produced goods is full. Robots receive the re-
quests and decide amongst themselves which one should take the transport job.
The main objective of the fleet is that every request is served in time. However,
robots also have individual goals, for example never to run out of energy.

3 Natural language specifications

In a systematic design process, a first step consists of a systematic description
of the functions a system shall provide. This is often done in specification docu-



Fig. 3. Scanned floor plan with roads, robots, and docking points

ments in natural language. We describe a stepwise process which we applied for
the case studies.

User stories

For specifying the different aspects of a CSG, we use controlled natural lan-
guage. User stories [Coh04] describe the system from the viewpoint of human
stakeholders. A user story describes a purpose which a user in a certain role
can achieve by applying the system at a certain time, as well as the reasons for
pursuing this purpose. User stories may then be exemplified via use case descrip-
tions and scenarios, formalized in UML use case diagrams and sequence charts.
We use a template sentence to formulate user stories.

As a [actor/role] I want the system to do [function] whenever [trigger]
occurs, such that [rationale] holds.

For example, the user story “Decentralized order management” describes how
the robots determine which one of them accepts an order. It can be formulated
as follows.

As a transport system operator I want the system to decide autonomously
which robot accepts a transport job whenever a job is issued by a ma-
chine, such that there is no need of a central control.

For the platooning use case, a typical top-level user story is the following.



As a driver I want the system to drive automatically together with other
vehicles in a platoon at close distance whenever a sufficiently large com-
mon route exists, such that fuel consumption decreases and a better
traffic flow is maintained.

A subordinate user story is about leaving a platoon:

As a driver I want the system to leave the platoon and hand over control
to me whenever I request it, such that I can drive to a different destination
than the platoon.

Objectives: goals and targets

From such user stories, objectives for the systems can be derived. An objective is a
specific requirement describing a specific intention for the system. Objectives can
be structured into a hierarchy, where lower levels support higher levels. Moreover,
they can be ordered according to their importance, or level of contribution to
the topmost objective.

For cyber-physical systems consisting of several independent agents, we have
to distinguish between objectives for the collaborative system group (CSG) and
for the individual collaborative embedded system (CES). The individual objec-
tives should support the group objectives.

In the transport robot case study, the overall objective of the CSG is to
provide transport services to machines. The most important high-level goal is to
keep the maximal waiting time of each machine below a given threshold. That
is, if the machine emits a request for a transport job, then it will be serviced
by exactly one robot within this threshold. The rationale is that production
machines often have a buffer for incoming and outgoing materials. If the input
buffer is empty or the output buffer is full, the machine will stop its operation.
This needs to be avoided. A related high-level target is to minimize the average
waiting time of machines, in order to cope with varying production speed. Low-
level objectives include

– robustness and fault tolerance, e.g., being able to deal with failures of (un-
loaded) robots, being able to circumvent temporary road blocks;

– scalability and flexibility, e.g., being able to dynamically integrate new robots
into the fleet, and being able to adapt to changes in the factory topology;

– efficiency and durability, e.g., balancing the usage of robots for equal wear
and tear; and

– security, e.g., ensuring that intruders and traitors cannot bring down the
system.

These fleet-related objectives must be complemented with individual objectives
for each CES. The topmost goal for each robot is to accomplish each trans-
port job it has accepted, if this is within its capabilities. A related target is to
accomplish the accepted transport jobs as fast as possible.

In order to support the topmost global goal “each request will be serviced”,
corresponding objectives for the individual robots must be set. For example,



an individual target could be to service as many requests as possible. However,
in isolation, this target might be too coarse, as it might lead robots to “self-
destructive” behaviour such as neglected charging, extensive wear and tear, con-
gestion of roads in the factory, etc. As an example, consider the case when a
robot has a low battery level which would allow to finish one more transport
job, but it would risk running out of energy on the subsequent way to a charging
station. Here, we have a conflict between different individual objectives. Should
the robot prioritize the target of servicing as many requests as possible over the
goal of never running out of battery? This shows that the targets must be refined
with an appropriate strategy which takes all objectives into respect.
Further objectives include

– keeping within designated floor areas,
– being able to cope with obstacles and road blocks,
– keeping battery level at 40–70%,
– minimizing the occupation time of docking and charging points,
– minimizing the number and length of empty trips, and
– avoiding rests outside designated parking areas.

Our industrial partner InSystems Automation GmbH, now ASTI Mobile
Robotics, formulated a number of objectives which refines and extends this list
[ZDS+17]. Analysing these objectives, we see that there are two types: Some are
“sharp”, for an actual implementation it is clear whether it has been reached or
not. For example, requirement “Load factor” enforces that production machines
are always adequately provided materials. If it is violated, machines will simply
stop working.

However, most objectives are “soft” or “fuzzy”, in the sense that they can
be reached more or less. An example is the requirement “Minimising non-value-
creating processes”, which implies that the number of robots should be as low
as possible. Thus, a solution with 10 robots is better than one with 20. However,
a solution where 12 robots are employed may also be acceptable, it offers more
options in unexpected circumstances.

We call an objective with a clear criterion whether it has been reached or
not a goal. In analogy to an archery target disk with concentric circles, which
can be hit more or less in the centre, we call soft requirements targets for the
system. In other words, a target is an objective which can be partially met, to a
higher or lower degree.

This categorization of objectives into goals and targets is essential for the
design. A goal is described as a certain state of affairs which an agent strives
to reach or maintain, whereas a target is a rough set of states which can be
approximated more or less. An agent can be close to a target, but being close
to a goal is the same as missing it. Therefore, goals usually have a long-term
character, whereas targets are frequently re-evaluated.

Scenarios

Goals and targets were operationalized via so-called scenarios. These are pro-
cedural descriptions of sequences of actions, which illustrate one particular se-



quence of events within the operation of the system. There is a huge body of
literature on different ways to denote scenarios, see, e.g., [?]. In our framework,
each step is described by a consecutive number, the name of the agent, the action
performed, the potential trigger for the action, and the rationale for the step.

An example is the distributed order management, which describes how au-
tonomous cooperating robots are able to determine which one of them fulfils
an order for transportation. If a new order is given and several robots are able
to take it, it must somehow be decided which one of these robots actually will
carry out the task. This is accomplished via a “bidding” or “consensus” process
in which each available robot calculates its factors playing into this task, e.g.
how far it is currently away from the pick-up area or how high or low its battery
charging status currently is. It then sends these combined factors as information
to the group as a bid. Depending on which robots can offer the most practical
circumstances, it is decided which robot takes the job. The respective scenario
is given in Table 1; for more information, see [Sch20].

Who? What? When? Why?

1 Machine Broadcasts trans-
portation need to
robots

Every time a machine
has support or dispose
need (may be in ad-
vance and/or may be
with priority)

The production pro-
cess of the machine is
not allowed to stop

2 Every Robot Calculates a bid for
this transport (may
be based on individual
cost and/or other cri-
teria)

When a new transport
need is notified

To get the information
which robot fits the
best for this transport

3 Every Robot Determine winner by
distributed leader elec-
tion algorithm. If two
robots bid the exact
same amount, the win-
ner is selected ran-
domly

After bidding

4 Robot Bid winner adds the
transport to its own
transport queue

When won a bid That the transport
need is satisfied

Table 1. Scenario for decentralized order management

The first four columns are necessary for subsequent formalization steps,
whereas the “why” column is for documentation purposes only.



4 Formal Specification

For an automated validation of system requirements, it is mandatory that these
are denoted in a suitable formal specification language.

Temporal logics: LTL, MTL, WMTL, STL

For the formal specification of goals, temporal logics can be used. In contrast
to more graphical specification languages, temporal logics are closer to textual
representations. A classical example is the property “for every request there is a
subsequent response”. This is written in linear temporal logic (LTL, [GPSS80])
as follows3.

G(request→ Fresponse)

In our setting, properties refer to real-time values. Therefore, timed temporal
logics are necessary. The property that every request for service by a machine is
fulfilled within 60 time units by some robot can be written in metric temporal
logic (MTL, [Koy90]) as follows4.

G(request(mi)→ F(0,60)∃rk at(mi, rk))

Other goals need spacial, epistemic, or strategic operators for formalization. It
is much harder to express quantitative targets in classical or modal logics. If
the bounds are made explicit (as in the example formula above), we can use
these bounds in formulas. For example, we can specify performance in Weighted
Metric Temporal Logic (WMTL, [BDL+12]). This logic contains an operator P
which returns the probability of a statement within a certain time period. As an
example, let the response time be the time difference between the time when a
job is created and the time when the job is finished. The property “The response
time within the first 1000 time units shall be less than 450 time units in 80% of
all requests” can be written in WMTL as follows.

(P(0,1000)(G(Job.active→ (Job.clock ≤ 450))) ≥ 0.8)

However, these specification logics do not allow to adequately translate the
natural-language formulation of the targets. The numerical borders (1000 time
units, 450 time units, 80%) are introduced artificially for the purpose of specifi-
cation, they do not appear in the original target.

In order to formalize also targets, we need a logic which allows to reason
about vagueness and strategies. Thus, we define a suitable variant of robust
signal temporal logic (STL) for this purpose [DM10]. Signal temporal logic was
invented to monitor the value of continuous signals in time. For example, if x
is the distance of a robot to some no-go-area, then G(x ≥ 10) means that the

3 As a remark, this formula does not require that for each request there is a corre-
sponding subsequent response, which cannot be expressed in LTL.

4 Here, the existential quantifier is a finite disjunction ranging over the finite set rk of
robots. Implicitly, the formula is a conjunction of all formulas for machine mi.



robot always keeps at least 10 units distance to this area. As another example,
if v is the desired and y is the actual speed of the car, then F[0,3](y = v) requires
that within 5 time units the desired speed is reached. The robustness value of a
formula indicates the quality with which a formula is satisfied. A positive value
means that the formula is true, with the indicated robustness. For example, the
formula (x ≥ 10) is both true if x = 10 and if x = 1000, but in the latter case
with higher robustness.

Alternating signal temporal logic ASTL*: syntax

We now define a new logic called alternating signal temporal logic (ASTL*) which
is tailored for the specification of collaborative embedded systems. ASTL* is a
canonical extension of both signal temporal logic (STL, [Don13]) and alternating-
time temporal logic (ATL*, see [AHK02]). It is inspired by the synthesis approach
for STL in [RDS+15]. In this section, we are using only the STL-part of ASTL*;
strategic reasoning will be used in Section 5.

Let Σ0 be an alphabet of primary signals, some of which can be controlled
and some observed. For example, a variable v to adjust the speed of a motor is a
controlled signal, whereas a sensor d signalling the distance to the next obstacle
is an observed signal. The set of controlled variables is called Σc. Furthermore,
let F = {+,−, ∗,√ , ...} be a set of primitive functions on signals. We assume
that F also contains constant functions, e.g., 0, 1, 3.14, etc. A derived signal is
a term built from primary signals with primitive functions. For example, if dx
and dy are primary signals indicating the distance of an object to an origin in
cartesian coordinates, then d =

√
dx ∗ dx + dy ∗ dy is a derived signal indicating

its absolute distance. The set Σ of signals consists of all primary and derived
signals. An atomic proposition is an inequality s ≥ 0, where s is a signal; the
set of atomic propositions is denoted by P. The syntax of ASTL is defined as
follows.

ϕ ::= P | |⊥ | (ϕ→ ϕ) | (ϕ UI ϕ) | 〈〈Σc〉〉 ϕ

Here, I is a closed or open interval of R+, and in the formula 〈〈s〉〉 ϕ, s ∈
Σc is a controlled variable5. As usual, ¬ϕ = (ϕ → ⊥), > = ¬⊥, (ϕ ∨ ψ) =
(¬ϕ→ ψ), etc. FI ϕ is short for (>UI ϕ), GI ϕ for ¬FI ¬ϕ. The unconstrained
temporal operator (ϕUψ) stands for (ϕU(0,∞) ψ), and similar for Fϕ and Gϕ.
Propositions s < 0, s ≤ c, s = 0, etc., can be defined as ¬s ≥ 0, c− s ≥ 0, and
(s ≥ 0 ∧ s ≤ 0), respectively.

Alternating signal temporal logic ASTL*: semantics

In the semantics, each signal s ∈ Σ0 is interpreted as a real-valued function over
the time domain. That is, a modelM consists of a set of functions sM : R+ → R.
From the interpretation of primary signals, the interpretation of derived signals

5 In similar strategy logics the modality is typically labelled by a set of agents which
collaborate; currently, we see no need for this feature.



can be deduced. Satisfaction of a formula ϕ at time t in model M is defined as
follows.

– (M, t) |= s ≥ 0 iff sM(t) ≥ 0
– (M, t) 6|= ⊥, and (M, t) |= (ϕ→ ψ) iff (M, t) |= ϕ implies (M, t) |= ψ
– (M, t) |= (ϕUI ψ) iff for some t1 ∈ t + I, (M, t1) |= ψ, and for all t2 such

that t < t2 < t1 it holds that (M, t2) |= ϕ.
– (M, t) |= 〈〈s〉〉ϕ iff there is a function s′ : R+ → R such that (M′, t) |= ϕ,

where sM
′

= s′ and rM
′

= rM for all r 6= s.

From this definition, it follows that

– (M, t) |= FI ϕ iff for some t1 ∈ t+ I, (M, t1) |= ϕ.
– (M, t) |= GI ϕ iff for all t1 ∈ t+ I, (M, t1) |= ϕ.

In the definition of the specification logic, we are more concerned with the prag-
matic, i.e., the ability to easily formulate objectives, than with questions about
expressiveness and complexity.

We write M |= ϕ iff (M, 0) |= ϕ. Thus, the above clauses assign a boolean
truth value to a formula in a model. STL is famous for its robust semantics,
where the “truth value” is a numerical value. Let R = R∪ {∞,−∞} and (R,≤)
be its closure with the usual ordering relation. Further let t : R × R → R
and u : R × R → R be the maximum and minimum functions on the extended
domain, i.e., (x t∞) = (∞t y) =∞, (x t −∞) = (−∞t x) = x, (x u −∞) =
(−∞ u y) = −∞, (x u ∞) = (∞ u x) = x and for x, y 6∈ {∞,−∞}, we have
(xty) = max(x, y) and (xuy) = min(x, y). Furthermore, for any subset X ⊆ R,
let

⊔
and

d
be the supremum and infimum functions over the set X, with⊔

R =∞ and
d
R = −∞. The score, also called spatial robustness, of a formula

with respect to a model is defined as follows.

– ρ(M, t, s ≥ 0) = sM

– ρ(M, t,⊥) = −∞
– ρ(M, t, (ϕ→ ψ)) = (−ρ(M, t, ϕ) t ρ(M, t, ψ))
– ρ(M, t, (ϕUI ψ)) =

⊔
t1∈t+I{ρ(M, t1, ψ),

d
t2∈t+I,t2<t1

ρ(M, t2, ϕ)}
– ρ(M, t, 〈〈s〉〉ϕ) =

⊔
{ρ(M′, t, ϕ) | rM′

= rM for all r 6= s}

This gives

– ρ(M, t,¬ϕ) = −ρ(M, t, ϕ)
– ρ(M, t, (ϕ ∨ ψ)) = (ρ(M, t, ϕ) t ρ(M, t, ψ))
– ρ(M, t, (ϕ ∧ ψ)) = (ρ(M, t, ϕ) u ρ(M, t, ψ))
– ρ(M, t,FI ϕ) =

⊔
{ρ(M, t1, ϕ) | t1 ∈ t+ I}

– ρ(M, t,GI ϕ) =
d
{ρ(M, t1, ϕ | t1 ∈ t+ I)}

Robust and classical semantics are connected by the fact that ρ(M, t, ϕ) ≥ 0
iff (M, t) |= ϕ. The score of a specification formula enables us to reason about
goals and targets of a system.



Alternating signal temporal logic ASTL*: examples

Using ASTL*, we can formalize some of the goals and targets for the trans-
port robot use case given in the previous section. For example, if Batt.lvl is an
observable signal indicating the current battery level, then

G(Batt.lvl ≥ 0.4 ∧ Batt.lvl ≤ 0.7)

formalizes the requirement that the battery level should be always between 40
and 70%. In each model M, the score of this statement at time t0 isd

{(Batt.lvlM(t+ t0)− 0.4), (0.7− Batt.lvlM(t+ t0)) | t ∈ R+}.
If this score falls below zero, then the requirement is violated and the design of
the robots must be changed.

Similarly, the score of the target

G(Job.active→ Job.clock ≤ 450)

which corresponds to the requirement “response time should be less than 450
time units” indicates by a numerical value whether the deadline has been kept.
Here, Job.active is a boolean variable indicating whether a service has been
requested, and Job.clock is a clock variable which starts to count whenever it be-
comes active. Such clock variables can serve to formulate also other requirements,
notably “minimizing the occupation times of docking points”, “minimizing the
number and length of empty trips”, and “avoiding rests outside of parking ar-
eas”.

Alternating signal temporal logic ASTL*: application

A model for ASTL* consists of an interpretation of signals by real-valued func-
tions. In order to generate such an interpretation which reflects the working of
an actual system, we need to model it6. In general, a model of a collaborative
system group consists of three parts:

– A model of the collaborating systems,
– a model of the static environment, and
– a model of the dynamic use of the system.

For the platooning use case, we need to model

– the CACC function,
– the road including lanes, traffic signs, etc., and
– traffic situations and platooning scenarios.

In the transport robot use case, components of the system model are

6 Unfortunately, the word “model” is used in two different meanings: as a structure to
evaluate logical formulas, and as an abstraction of a physical system. Both of these
uses of the word are well-established, the meaning should be clear from context.



– the behaviour of each robot,
– the map, including no-go-areas, location of machines, charging points, etc.,

and
– the load, i.e., the transport jobs which are issued.

These components can be formulated in a suitable modelling language. We use
deterministic hybrid automata, as realized in the Simulink R© modelling language.
The map is represented by a two-dimensional table. The load is a list of trans-
port jobs, each with an ID, starting time, origin, and destination. The control
algorithm of the robots is a diagram representing the behaviour and decisions.
It is described in the next section.

Since the system model is a deterministic hybrid automaton, for every setup
there is exactly one (infinite) run. This run defines a model for the ASTL* spec-
ification. It is represented as a discrete linear sequence of states and transitions.
This sequence is directly obtained from a run of the Simulink model. For model
checking such a sequence, a time-discrete semantics for ASTL* can be defined.
In such a time-discrete semantics, the score of a formula is evaluated up to a
certain state. Whenever the formula contains no strategic operators, the evalu-
ation is linear in the length of the formula and the length of the run. Given a
sufficiently fast computer, it can be done on-line, while the simulation is running.
This approach is called monitoring and is elaborated in Section 6.

If the formula contains strategic operators, several alternative runs of the
system need to be checked. Since there may be an infinite number of alterna-
tives, monitoring is not sufficient. In the next section, we discuss the automatic
construction of strategies for a given system model and ASTL* specification.

5 Strategy Synthesis

The control algorithm for the robots consists of a three-layered architecture. The
bottom layer contains low-level control functions such as the evaluation of sensor
data and driving of motors. We call this layer the reactions layer. In this layer,
self-localization and mapping is handled: laser scan data and odometry daty
are combined to calculate a most likely position for the robot in the factory.
Commands to move to a specific target are translated into motor settings, and
continually supervised during the movement of each robot. If an obstacle is
sensed, the robot stops; if a deviation of the actual trajectory from the planned
path is detected, it is corrected.

The mid-layer deals with regulations for the behaviour, such as the planning
of optimal paths according to the map and current situation, maintaining a
queue of assigned jobs, and navigating only in dedicated roads. This layer is
called the rules layer.

The topmost layer deals with principles and priorities which govern the over-
all behaviour, such as goals and targets. In our terminology, we call this the
principles layer. It determines the strategy according to which each robot bids
for a job, or decides to drive to a power outlet.



This three-layered architecture reflects a generic scheme for reliable autono-
mous systems as elaborated in [FMR+20].

We wish to derive strategies for the principles layer.
For example, a strategy supporting the topmost goal of servicing each ma-

chine in time consists of an auctioning mechanism for issued transport requests,
see Table 1. This strategy can be formulated in natural language as follows.

Each robot maintains a local queue of accepted transport jobs and estimated
completion times. If a machine issues a new request, the robot calculates an
estimated arrival time at this machine. The job mileage is the distance between
the last position in this list and the location of the machine. The estimated
arrival time is the estimated completion time of the last job in the task queue
and the estimated travel time for the job mileage. Based on the estimated arrival
time and the deadline of the job, the robot places the job mileage as a bid. Then,
the robot waits and collects other bids. After all bids are placed, the robot selects
and communicates the lowest bid. If more than one lowest bid arrived, one of the
lowest bids is selected randomly. Otherwise, if the robot has placed the lowest
bid itself, the job is appended to the task queue.

This strategy does not take into respect power consumption, battery charg-
ing, wear and tear, and other targets. Further strategies are, e.g., the following.

– Random: In the bidding, each robot bids a randomly chosen amount.
– First-come-first-served: Each robot bids the estimated completion time of its

current task list.
– Shortest time: Each robot bids the estimated earliest arrival time at the

machine.
– Highest energy: Each robots bid its current battery level (highest bid wins).

A variant is to bid the estimated energy after completing the last job in the
task list.

– Mileage: The bidding sum is a function of the job mileage, and the total
mileage of the robot.

The bidding process is decisive for the performance of the whole fleet. In
simulation runs, one can observe that the fleet behaviour changes significantly
with the bidding strategy [Sit18]. The strategy of each robot culminates in the
question which amount to bid if a new request is issued. In general, this is a
function of

– current task list,
– current traffic situation,
– battery level, and
– individual history and future of the robot.

Our aim is to find a bidding strategy which satisfies the requirements for the
fleet. This is where strategic quantifiers of ASTL* come into play. They allow to
formulate requirements without resorting to a specific strategy.
Specifically, if bid.i.j is the amount robot i bids on task j, then

〈〈bid.i.j 〉〉ϕ



denotes that there is a way for robot i to bid for a job which leads to the
satisfaction of goal ϕ. We assume that bid.i.j is a controlled variable which can
be set by robot i.

In lieu of a dedicated model checker for ASTL*, we used MCMAS [LQR17]
on a scenario similar to the transport robot use case. MCMAS is a tool for
model checking of strategic epistemic logic with multi-agent systems. It has been
successfully applied to several academic examples.

Our scenario is similar to the well-known “Pacman” game, where agents are
trying to pick up rewards on a two-dimensional grid. Strategic choices for an
agent in each situation are whether to move north, south, east or west. From
this, complex group strategies emerge. For example, it may not be optimal to
always move towards the nearest reward, if another agent is also heading to pick
it up. As expected, a state explosion occurs with the size of the board and the
number of agents. Specifically, we were able to synthesize strategies for up to
three robots on an 8× 8 grid.

Since this is far from the size required for realistic industrial scenarios, we are
using machine learning techniques to find an optimal strategy. The MAgent re-
search platform for many-agent reinforcement learning [ZYC+17] allows to train
systems with hundreds to millions of agents. We compared the quality of super-
vised strategy learning with reinforcement learning of strategies. In supervised
learning, the MCMAS model checker guides the learning process. Since this is is
computationally very expensive, the technique can be applied for off-line synthe-
sis only. In reinforcement learning, each agent starts with a random strategy and
learns from previous matches. Our experiments show some results which were
surprising to us. Supervised learning scales better if only few learning iterations
are allowed. However, after a few thousands of iterations, reinforcement learning
results in better strategies. This is consistent with results obtained for learning
games such as Go, Chess and Shogi by the AlphaZero program.

6 Online Monitoring

Online monitoring is a technique where the observed traces of a system are
compared to a formal specification. Traces can be obtained from a prototypical
implementation, or from a simulation as described above. As mentioned before,
monitoring requires that there is a unique system run; hence is can be used
to assert that a strategy automatically synthesized from a model behaves as
expected also in reality. A challenge is to design a monitoring system which
can detect and flag problems early, ideally even before they occur. That is, the
monitor should raise an alarm even while the system is acting normally, if it has
a tendency to drift into the exceptional behaviour.

To this end, we extended the semantics of ASTL*. Basically, we consider
traces of finite length, which are processed one step after the other. A formula
in a timed trace at a certain instant not only can be true or false, but the truth
value additionally can be any real number. As long as the truth value of a formula
in a model is not determined according to the standard semantics, we assign it a



“likelihood” of being satisfied. This “likelihood” is calculated from the distance
of the deadlines in the formula to the end of the trace, and the respective values
for the sub-formulas.

We implemented an algorithm for monitoring our extended semantics [LS18].
For the evaluation of this algorithm, we collected traces from (a centralized
version of) our transport robot case study. These traces covered a duration
of several days up to a week of operation, and contained more than 106 timed
events. By analysing the response time of the transport system to issued requests,
we found a quite high variance of this value (between 1 and 100 min). Evaluating
the MTL response property given above (every job will be fulfilled within 60 sec)
revealed that property violation tended to “build up”: several “near misses” were
followed by a definite miss. This could not have been found by classical boolean-
valued monitoring methods.

7 Conclusion and Further Work

We presented results in the specification and verification of collaborative embed-
ded systems. As case studies, we described platooning of highly-automated ve-
hicles, and an indoor logistics system consisting of autonomous transport robots
in factories. For the specification of the systems, we used a stepwise refinement
approach: From purposes via objectives to strategies. We specified the aims of
the system with user stories in controlled natural language, augmented by sce-
narios as sequences of steps. From this, we derived formal objectives for the
system. We categorized the objectives as goals or targets, depending on whether
they are purely qualitative or also quantitative. Furthermore, we showed how
to formalize the goals in various temporal logics. Then, we identified strategies
supporting the defined goals and targets. We formalized the strategies in differ-
ent state-transition-based modelling formalisms, and used simulation and model
checking to analyse these models. Finally, we showed how to apply monitoring
techniques to analyse long execution traces of the system for the accumulation
of problems.

From our results, we can draw the following conclusions. Firstly, there is no
“one size fits all” method for the formal analysis of such complex systems. We
used different methods, e.g., timed automata, for different verification goals, e.g.,
correct timing. For the defined targets, we used quantitative analysis methods
such as stochastic simulation and probabilistic model checking. However, these
methods forced us to introduce artificial bounds. Therefore, we employed ro-
bust semantics which can give precise results also for fuzzy requirements and
approximative targets.

Secondly, our analysis was facilitated by the fact that we were dealing with
collaborative rather than competitive systems. In this paradigm, the individual
strategy of each agent contributes to the aims of the whole system. The envi-
ronment has no “strategy” to adverse the outcome. Therefore, by an individual
optimization, the performance of the collaborative group increases. We believe
that this observation is typical for a large number of similar systems. It remains



further work to make this statement precise, i.e., to show that the complexity of
collaborative strategy synthesis is lower than in the competitive case.

There are several other directions for further work. The complexity of our
specification logic is unnecessarily high, since it employs full second-order quan-
tification on functions. It remains to be investigated whether suitable sub-languages
yield a lower complexity. Furthermore, we have not elaborated a dedicated model
checking algorithm for our logic with a specific modelling framework. Hybrid
automata and Simulink are very expressive formalisms which might be suitably
restricted. Our hope is to find a “small” framework which is nevertheless suffi-
ciently rich to model all important aspects of collaboration.

Furthermore, strategy learning in the context of CSG validation is a topic
which needs further consideration. Although our experiments indicate that there
is no “easy” way to combine model checking and machine learning for strategy
synthesis, there are a number of directions we did not yet explore. Thus, the
future remains exciting.
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[DM10] Alexandre Donzé, Oded Maler: Robust Satisfaction of Temporal Logic over
Real-Valued Signals, FORMATS 2010: Formal Modeling and Analysis of
Timed Systems pp 92-106
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