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Abstract. The classical van Benthem theorem characterizes modal logic
as the bisimulation-invariant fragment of first-order logic; put differently,
modal logic is as expressive as full first-order logic on bisimulation-
invariant properties. This result has recently been extended to two
flavours of quantitative modal logic, viz. fuzzy modal logic and prob-
abilistic modal logic. In both cases, the quantitative van Benthem the-
orem states that every formula in the respective quantitative variant
of first-order logic that is bisimulation-invariant, in the sense of being
nonexpansive w.r.t. behavioural distance, can be approximated by quan-
titative modal formulae of bounded rank. In the present paper, we unify
and generalize these results in three directions: We lift them to full coal-
gebraic generality, thus covering a wide range of system types includ-
ing, besides fuzzy and probabilistic transition systems as in the existing
examples, e.g. also metric transition systems; and we generalize from
real-valued to quantale-valued behavioural distances, e.g. nondetermin-
istic behavioural distances on metric transition systems; and we remove
the symmetry assumption on behavioural distances, thus covering also
quantitative notions of simulation.

Keywords: Modal logic · Quantale · Fuzzy logic · Coalgebra · Be-
havioural distance · Modal characterization.

1 Introduction

Modal logic takes part of its popularity from the fact that it specifies transi-
tion systems at what for many purposes may be regarded as the right level of
granularity; that is, it is invariant under the standard process-theoretic notion of
bisimulation in the sense that bisimilar states satisfy the same modal formulae.
There are two quite different well-known converses to this elementary property,
which both witness the expressiveness of modal logic: By the Hennessy-Milner
theorem [29], states in finitely branching systems that satisfy the same modal
formulae are bisimilar, and by the van Benthem theorem, every first-order de-
finable bisimulation-invariant property is expressible by a modal formula. Since
modal logic embeds into first-order logic, the latter result may be phrased as say-
ing that modal logic is the bisimulation-invariant fragment of first-order logic.

? Work of both authors forms part of the DFG project Probabilistic description logics
as a fragment of probabilistic first-order logic (SCHR 1118/6-2)
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In the two-valued setting, there has been increased recent interest in variants
and generalizations of this result (e.g. [54,14,52,22,55,1])

For quantitative systems, it has long been realized (e.g. [26,15,10]) that quan-
titative notions of process equivalence, generally referred to as behavioural met-
rics (although they are in general only pseudometrics, as distinct but equivalent
states have distance zero), are often more appropriate than two-valued bisim-
ilarity. In particular, while two-valued notions of process equivalence just flag
small deviations between systems as inequivalence, behavioural metrics can pro-
vide more fine-grained information on the degree of similarity of systems. Be-
havioural metrics are correspondingly used, e.g., in verification [25], differential
privacy [13], and conformance testing of hybrid systems [36].

In the same way that two-valued modal logic constitutes a natural speci-
fication language for two-valued transition systems, quantitative systems cor-
relate to quantitative modal logics. In this context, bisimulation invariance is
read as nonexpansiveness w.r.t. behavioural distance, i.e. two states differ on a
modal formula at most by their behavioural distance; we refer to this property
as behavioural nonexpansiveness. Notably, van Breugel and Worrell [10] prove
a Hennessy-Milner type theorem for a quantitative probabilistic modal logic:
They show that on compact state spaces, the formulae of the logic lie dense
in the space of behaviourally nonexpansive state properties, which implies that
behavioural distance and logical distance coincide.

In the present paper, we are mainly interested in the other converse to be-
havioural nonexpansiveness, i.e. in quantitative van Benthem theorems. In pre-
vious work with Pattinson and König, we have established such theorems for
quantitative modal logics of fuzzy [57] and probabilistic [58] transition systems.
In the quantitative setting, these theorems take the form of approximability
properties, and state that every behaviourally nonexpansive quantitative first-
order property is approximable by quantitative modal formulae of bounded rank.
The latter qualification is in fact the key content of the respective theorems –
without it, approximability is closer in flavour to Hennessy-Milner-type theo-
rems, which apply to arbitrary rather than just first-order definable properties
(although one should note additionally that our van Benthem theorems do not
assume compactness of the state space).

Our present contribution is to unify and generalize these results in three di-
rections: First, we allow for full coalgebraic generality, i.e. we cover system types
subsumed under the paradigm of universal coalgebra [49]. Besides the fuzzy and
probabilistic systems featuring in the previous concrete instances of our result,
this includes a wide range of weighted, game-based, and preferential systems; for
illustration, we concentrate on the (comparatively simple) case of metric tran-
sition systems [3,20] in the presentation. Second, we generalize from real-valued
to quantale-valued metrics (e.g. [24,33]). Using the unit interval quantale, we
recover our previous results on real-valued logics as special cases. Beyond this,
quantales in particular provide support for what may be termed metrics with
effects; we illustrate this on a notion of convex-nondeterministic behavioural dis-
tance on metric transition systems, where the behavioural distance gives an
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interval of possible real-valued distances. Lastly, we remove the assumption that
distances need to be symmetric, so that we cover also notions of quantitative
simulation. At this level of generality, we prove both a Hennessy-Milner type
theorem stating coincidence of logical and behavioural distance, effectively gen-
eralizing the existing coalgebraic quantitative Hennessy-Milner theorem [37] to
quantale-valued distances; and, as our main result, a quantitative van Benthem
theorem stating that all behaviourally non-expansive first-order properties can
be modally approximated in bounded rank.

Related Work There is a substantial body of work on two-valued modal charac-
terization theorems, e.g. for logics with frame conditions [14], coalgebraic modal
logics [52], fragments of XPath [12,22,1], neighbourhood logic [28], modal logic
with team semantics [38], modal µ-calculi (within monadic second order log-
ics) [35,19], PDL (within weak chain logic) [11], modal first-order logics [6,54],
and two-dimensional modal logics with an S5-modality [55]. We are not aware of
quantitative modal characterization theorems other than the mentioned ones for
fuzzy and probabilistic modal logics [57,58]. Prior to the quantitative Hennessy-
Milner theorems mentioned above [10,37], Hennessy-Milner theorems have been
established for two-valued logics and two-valued bisimilarity over quantitative
systems, e.g. on probabilistic transition systems [39,16,17]. There is work on
Hennessy-Milner theorems for certain Heyting-valued modal logics [21,18]; since
Heyting algebras are quantales but often fail to meet a continuity assumption
needed in our generic Hennessy-Milner theorem, we do not claim to subsume
these results.

2 Preliminaries

We briefly recall basic definitions and examples on quantales and universal coal-
gebra, and fix some data needed throughout the paper. We need some elementary
category theory, see, e.g., [2].

Quantales are order-algebraic structures that serve as objects of truth values
in suitable multi-valued logics, and also support a useful notion of generalized
(pseudo-)metric space (e.g. [24,33,32]). Our arguments will rely on a certain
amount of epsilontics, and hence require more specifically the use of value quan-
tales [24].

We recall some basic order and lattice theory. A complete lattice is a partially
ordered set (V,≤) having all suprema

∨
A for A ⊆ V , equivalently all infima∧

A. We denote binary meets and joins by ∧ and ∨, respectively. Given x, y ∈ V ,
we say that x is well above y, and write x � y, if whenever y ≥

∧
A for some

A ⊆ V , then x ≥ a for some a ∈ A. A complete lattice (V,≤) is completely
distributive if all joins in V distribute over all meets, equivalently all meets
distribute over all joins [46]. Another equivalent characterization is that (V,≤)
is completely distributive iff

y =
∧
{x ∈ V | x� y}
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for every y ∈ V [47].
In the definition of value quantale, we follow Flagg [24] in dualizing the usual

continuity condition for quantales in order to avoid having to reverse the order
when moving between the general development and basic examples such as the
unit interval; deviating from his terminology, we emphasize this by the prefix
‘co-’:

Definition 2.1 ((Value) co-quantales). A (commutative) co-quantale V is a
complete lattice (V,≤) equipped with a commutative monoid structure (0,⊕)
that is meet-continuous:

a⊕
∧
i∈I bi =

∧
i∈I(a⊕ bi).

A co-quantale V is a value co-quantale [24] if 0 is the bottom element of V
and moreover (V,≤) is a value distributive lattice, i.e. a completely distributive
complete lattice such that |V | > 1 and for all x, y ∈ V , x, y � 0 implies x∧y � 0.
Correspondingly, we denote the greatest element of V by 1.

(Dually, in a quantale the operation ⊕ is required to be join-continuous.) By
meet-continuity, we obtain a further binary operator 	 on a co-quantale V by
adjunction, defined by

a	 b ≤ v iff a ≤ b⊕ v

(equivalently, a	 b =
∧
{v | a ≤ b⊕ v}). The operator 	 is sometimes called the

internal hom of V [7]. Moreover, in a value co-quantale, we have that for each
ε � 0, there exists δ � 0 such that 2 · δ := δ ⊕ δ ≤ ε [24, Theorem 2.9]. This
allows for proofs where an error bound ε� 0 needs to be split up into multiple
smaller parts.

A simple example of a value co-quantale is the unit interval [0, 1] with the
usual ordering, with truncated addition a ⊕ b = min(a + b, 1) as the monoid
structure. Correspondingly, the 	 operation is truncated subtraction a 	 b =
max(a−b, 0). We have a� b iff a > b. We will give further examples in Section 3.

Universal Coalgebra serves as a unified framework for many types of state-
based systems [49], such as nondeterministic, probabilistic, alternating, game-
based, or weighted systems. It is based on encapsulating the system type as a
functor T , for our purposes on the category Set of sets and functions; such a T
assigns to each set X a set TX, thought of as a type of structured collections
over X, and to each map f : X → Y a map Tf : TX → TY , respecting iden-
tities and composition. A T -coalgebra (A,α) consists of a set A of states and a
transition map α : A → TA, thought of as assigning to each state a structured
collection of successors. Taking T to be the covariant powerset functor P, which
assigns to each set X its powerset PX, we obtain relational transition systems
as T -coalgebras. As a further example, the (discrete) subdistribution functor S
assigns to each set X the set SX of discrete probability subdistributions µ on X
(i.e. µ(X0) = µ(X) ≤ 1 for some countable subset X0 ⊆ X), and to each map
f : X → Y the image measure function (i.e. Sf(µ)(B) = µ(f−1[B]) for B ⊆ Y ).
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S-coalgebras are probabilistic transition systems (or Markov chains) with possi-
ble deadlock: They assign to each state a subdistribution over possible successor
states, with the gap of the total probability to 1 interpreted as the probability
of deadlock. Additional instances are seen in Example 4.4. For the remainder of
the paper, we fix a set functor T and require that T∅ is nonempty (hence our
use of subdistributions instead of distributions in the examples). Moreover, we
require w.l.o.g. that T is standard, i.e. preserves subset inclusions [5].

3 Quantale-Valued Distances and Lax Extensions

A V-valued relation between sets A and B is a map R : A × B → V , which we
also denote by R : A→+ B. For fixed A and B, we order the V-valued relations
between A and B pointwise: R1 ≤ R2 ⇐⇒ ∀a ∈ A, b ∈ B. R1(a, b) ≤ R2(a, b).
We compose relations R : A→+ B and S : B→+ C using the monoid operation on V:

(R;S)(a, c) =
∧
{R(a, b)⊕ S(b, c) | b ∈ B}.

Given a function f : A→ B and ε ∈ V , the ε-graph Grε,f is the relation

Grε,f (a, b) =

{
ε, if f(a) = b;

1, otherwise.

We also write Grf = Gr0,f and, in case of the identity function, ∆ε,X = Grε,idX
and ∆X = ∆0,X .

Definition 3.1 (V-continuity space). Let X be a set and let d : X→+ X. The
pair (X, d) is a V-continuity space [24] if d ≤ ∆X and d ≤ d; d, or equivalently,
if for all x, y, z ∈ X,

d(x, x) = 0 and d(x, z) ≤ d(x, y)⊕ d(y, z).

The dual of (X, d) is the V-continuity space (X, d∗) where d∗(x, y) = d(y, x). The
symmetrization of (X, d) is the space (X, ds) with ds(x, y) = d(x, y) ∨ d∗(x, y).
We say that (X, d) is symmetric if d = d∗.

Remark 3.2. Recall that omission of the metric symmetry axiom d(x, y) =
d(y, x) is standardly designated by the prefix ‘quasi-’ and omission of the anti-
symmetry axiom d(x, y) = 0 ⇒ x = y by the prefix ‘pseudo-’; thus, continuity
spaces could be termed generalized pseudo-quasimetric spaces, and symmetric
continuity spaces generalized pseudometric spaces.

The co-quantale V itself is made into a V-continuity space (V, dV) using the
operator 	:

dV(a, b) = a	 b.
For any set A, the supremum distance between V-valued maps f, g : A→ V is

d∨V(f, g) =
∨
a∈A

dV(f(a), g(a)).

The usual notion of nonexpansive map generalizes as expected:
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Definition 3.3 (Nonexpansive maps). A map f : X → Y between V-
continuity spaces (X, d1) and (Y, d2) is nonexpansive if d2(f(x), f(y)) ≤ d1(x, y)
for all x, y ∈ X. We denote the space of nonexpansive maps between (X, d1) and
(Y, d2) by (X, d1)→1 (Y, d2). In the special case of nonexpansive V-valued maps
we write Pred(X, d) = (X, d)→1 (V, dV).

Ultimately we are interested in defining and reasoning about behavioural dis-
tances. Generally speaking, a behavioural distance is a V-continuity space de-
fined on the carrier of a T -coalgebra α : A → TA in such a way that the be-
haviour defined by the coalgebra map α is incorporated into the distance values
of states in A. This is accomplished using relation liftings, which lift V-valued
relations giving distances between states to those giving distances between suc-
cessor structures of states. We specifically generalize the notion of nonexpansive
lax extension [56] to the quantale-valued case:

Definition 3.4 (Lax Extension). A nonexpansive lax extension of T is a map-
ping L that maps V-valued relations R : A×B → V to relations LR : TA×TB →
V and satisfies the following axioms:

(L1) R1 ≤ R2 =⇒ LR1 ≤ LR2

(L2) L(R;S) ≤ LR;LS

(L3) LGrf ≤ GrTf

(L4) L∆ε,A ≤ ∆ε,TA

for all R,R1, R2 : A→+ B,S : B→+ C, f : A→ B and ε ∈ V .

(The notion of lax extension, given by axioms (L1)–(L3), is standard, e.g. [31];
the axiom (L4), introduced in [56], guarantees nonexpansiveness w.r.t. the supre-
mum metric as shown in Lemma 3.6.)

Lemma 3.5. If L is a lax extension of T and (A, d) is a V-continuity space,
then so is (TA,Ld).

Lemma 3.6. If L is a nonexpansive lax extension of T , then L is in fact non-
expansive w.r.t. the supremum metric. That is, for R1, R2 : A →+ B we have
d∨V(LR1, LR2) ≤ d∨V(R1, R2).

Proof. We have d∨V(R1, R2) ≤ ε ⇐⇒ R1 ≤ R2;∆ε. Using (L1), (L2) and (L4),
we have LR1 ≤ L(R2;∆ε) ≤ LR2;L∆ε ≤ LR2;∆ε, so d∨V(LR1, LR2) ≤ ε. ut

For technical purposes, we will be interested in a generalized version of total
boundedness (recall that a standard metric space is compact iff it is complete
and totally bounded):

Definition 3.7 (Total boundedness). Let (X, d) be a V-continuity space.
For ε � 0, we write Bsε(x) = {y ∈ X | ds(x, y) ≤ ε} for the (symmetric) ball
of radius ε around x ∈ X. A finite ε-cover of (X, d) is a choice of finitely many
x1, . . . , xn ∈ X such that X =

⋃n
i=1B

s
ε(xi). We say that (X, d) is totally bounded

if X has a finite ε-cover for each ε� 0.
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Remark 3.8. Note that use of the symmetrization ds is essential in the above
definition; e.g. in the unit interval, with d(x, y) = x	 y, the set {y | d(0, y) ≤ ε}
is the whole space, so 0 alone would form an ε-cover of [0, 1] if we replaced ds

with d.

Moreover, our main result involves a generalization of the standard notion of
density:

Definition 3.9 (Density). Let (X, d) be a V-continuity space. A subset Y ⊆ X
is dense if for every x ∈ X and ε� 0 there exists y ∈ Y such that ds(x, y) ≤ ε.

Assumption 3.10. Throughout the paper, we fix a value co-quantale V that is
totally bounded as a V-continuity space. Moreover, we fix a dense subset V0 ⊆ V
for use as a set of truth constants in the relevant logics, with a view to keeping
the syntax countable in the central examples. (The technical development, on
the other hand, does not require V0 to be countable, so we can always take
V0 = V .)

Example 3.11 ((Value) co-quantales).

1. The set 2 = {0, 1}, with 0 ≤ 1 and with binary join as the monoid struc-
ture, is a value co-quantale [24], and of course totally bounded. 2-Continuities d
are just preorders, with y being above x if d(x, y) = 0 (!); symmetric 2-
continuities are equivalence relations. Notice that 0� 0 in 2. The 	 operator is
given by a	 b = 1 iff a = 1 and b = 0.

2. The dual of every locale (e.g. [8]), in particular the set of closed subsets
of any topological space, forms a co-quantale, with binary join as the monoid
structure. However, locales are not in general value co-quantales. The dual Ω(R)
of the free locale over a set R, described as the lattice of downclosed systems of
finite subsets of R (ordered by reverse inclusion of such set systems), does form
a value co-quantale [24], and is totally bounded [30]. Ω(R)-continuity spaces are
known as structure spaces [30,24].

3. The unit interval [0, 1] is totally bounded. [0, 1]-Continuity spaces coin-
cide with 1-bounded pseudo-quasimetric spaces, and symmetric [0, 1]-continuity
spaces with 1-bounded pseudometric spaces in the standard sense (cf. Re-
mark 3.2).

4. Convex-nondeterministic distances: The set I of nonempty closed subin-
tervals (i.e. finitely generated nonempty convex subsets) of [0, 1], written in the
form [a, b] with a ≤ b, ordered by [a, b] ≤ [c, d] iff a ≤ c and b ≤ d, and
equipped with truncated Minkowski addition [a, b]⊕ [c, d] = [a⊕c, b⊕d] (with ⊕
on [0, 1] defined as in the previous item), is a totally bounded value co-quantale.
We write [〈a, b〉] = [a,max(a, b)]. We have [a, b] � 0 = [0, 0] iff a > 0, and
[a, b]	 [c, d] = [〈a	 c, b	 d〉], again with 	 on [0, 1] described as in the previous
item. We can think of an I-continuity space as assigning to each pair of points
a nondeterministic distance, given as an interval of possible distances.
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4 Quantale-Valued Modal and Predicate Logics

We next introduce the main objects of study, quantale-valued coalgebraic modal
and predicate logics. They will feature modalities interpreted using a quantitative
version of predicate liftings [45,50,51]. Predicate liftings take their name from
the fact that they lift predicates on a base set X to predicates on the set TX
(where T is our globally fixed functor representing the system type according
to Section 2). We work with V-valued predicates, which are organized in the
contravariant V-powerset functor Q given on sets X by QX = X → V and on
functions f : X → Y by Qf(g) = g ◦f (that is, Q is a functor Setop → Set where
Setop is the opposite category of Set). In keeping with the prevalent reading in
fuzzy and probabilistic logics (where, typically, V = [0, 1]), we read 0 ∈ V as
‘false’ and 1 ∈ V as ‘true’ (opposite choices are also found in the literature, e.g.
in modal logics for metric transition systems [3], where 0 ∈ [0, 1] is interpreted
as ‘true’). Predicate liftings can have arbitrary finite arities [50]. For brevity, we
restrict the presentation to unary modalities and predicate liftings; generalizing
to higher arities requires only more indexing.

Definition 4.1. A (V-valued) predicate lifting is a natural transformation
λ : Q → Q ◦ T , i.e. a family of maps λX : QX → QTX, indexed over all sets X,
such that λY (f)(Th(t)) = λX(f ◦ h)(t) for all f : Y → V , h : X → Y , t ∈ TX.

Definition 4.2. Let λ be a predicate lifting.

1. λ is monotone if for all sets X and all f, g ∈ QX with f ≤ g we have
λX(f) ≤ λX(g).

2. λ is nonexpansive if for all sets X and all f, g ∈ QX we have
d∨V(λX(f), λX(g)) ≤ d∨V(f, g).

For the remainder of the paper, we fix a set Λ of monotone and nonexpansive
predicate liftings, which, by abuse of notation, we also use as modalities in the
syntax. A basic example is the ♦ modality of quantitative probabilistic modal
logic [10], which denotes expected probability (in the next transition step) and
corresponds to a predicate lifting for the (sub-)distribution functor S (Section 2);
see Example 4.4.2 for details. The generic syntax of (V-valued) quantitative
coalgebraic modal logic is then given by the grammar

ϕ,ψ ::= c | ϕ⊕ c | ϕ	 c | ϕ ∧ ψ | ϕ ∨ ψ | λϕ (c ∈ V0, λ ∈ Λ).

The operators ⊕, 	, ∨, ∧ denote co-quantale operations, the meaning of λ is
determined by the associated predicate lifting. As usual, the rank of a formula ϕ
is the maximal nesting depth of modalities λ in ϕ. We denote the set of all modal
formulae by LΛ and the set of formulae of rank at most n by LΛn .

Formally, the semantics is defined by assigning to each formula ϕ and each
T -coalgebra α : A → TA the extension JϕKα : A → V , or just JϕK, of ϕ over α,
recursively defined by

Jϕ⊕ cK(a) = JϕK(a)⊕ c Jϕ	 cK(a) = JϕK(a)	 c
Jϕ ∧ ψK(a) = JϕK(a) ∧ JψK(a) Jϕ ∨ ψK(a) = JϕK(a) ∨ JψK(a)

JcK(a) = c JλϕK(a) = λA(JϕK)(α(a))
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Remark 4.3. Fuzzy logics differ widely in their interpretation of propositional
connectives (e.g [41]). In our modal syntax, we necessarily restrict to nonexpan-
sive operations, in order to ensure nonexpansiveness w.r.t. behavioural distance
later; this is typical of characteristic logics for behavioural distances (such as
quantitative probabilistic modal logic [10]). The logic hence does not include
binary ⊕ or 	 (in the above syntax, we insist that one of the arguments is a
constant). In terminology usually applied to V = [0, 1], we thus allow Zadeh
connectives (such as ∨, ∧) but not  Lukasiewicz connectives, so for V = [0, 1],
the above version of quantitative coalgebraic modal logic is essentially the Zadeh
fragment of  Lukasiewicz fuzzy coalgebraic modal logic [51].

The syntax does not include negation 1 	 (−); if V satisfies the De Morgan
laws (e.g. these hold in [0, 1]), Λ is closed under duals 1	 (λ(1	 (−))), and V0
is closed under negation (i.e. c ∈ V0 implies 1 	 c ∈ V0), then negation can be
defined via negation normal forms as usual.

As the ambient predicate logic of the above modal logic, we use (V-valued) quan-
titative coalgebraic predicate logic, a quantitative variant of two-valued coalge-
braic predicate logic [40]. Its syntax is given by

ϕ,ψ ::= c | x = y | ϕ⊕ c | ϕ	 c | ϕ ∧ ψ | ϕ ∨ ψ | ∃x.ϕ | ∀x.ϕ | xλdy : ϕe

where c ∈ V0, λ ∈ Λ, and x, y come from a fixed supply Var of (individual)
variables. The reading of xλdy : ϕe is the modalized truth degree (according
to λ) to which the successors y of a state x satisfy ϕ; e.g. with ♦ as above,
x♦dy : ϕe is the expected truth value of ϕ at a random successor y of x. The
semantics over (A,α) as above is given by V-valued maps JϕKα, or just JϕK, that
are defined on valuations κ : Var → A. The interesting clauses in the definition
are

J∃x.ϕK(κ) =
∨
a∈A

JϕK(κ[x 7→ a]) J∀x.ϕK(κ) =
∧
a∈A

JϕK(κ[x 7→ a])

Jxλdy : ϕeK(κ) = λA(JϕK(κ[y 7→ · ]))(α(κ(x)))

(where κ[y 7→ a] maps y to a and otherwise behaves like κ, and by JϕK(κ[y 7→ · ])
we mean the predicate that maps a to JϕK(κ[y 7→ a])). Moreover, equality is
crisp, i.e. Jx = yK(κ) is 1 if κ(x) = κ(y), and 0 otherwise.

Example 4.4. We discuss some instances of the above framework.

1. Fuzzy modal logic: Take T to be the covariant V-valued powerset functor,
i.e. TX = X → V and Tf(A)(y) =

∨
{A(x) | f(x) = y} for f : X → Y . We think

of A ∈ TX as a V-valued fuzzy subset of X; we say that A is crisp if A(x) ∈ {0, 1}
for all x. Put Λ = {♦} where ♦X(A)(B) =

∨
{A(x)∧B(x) | x ∈ X} for A ∈ QX,

B ∈ TX. Then T -coalgebras are equivalent to fuzzy Kripke frames, which consist
of a set X and a fuzzy relation R : X×X → V , and ♦ is the natural fuzzification
of the standard diamond modality. Fuzzy propositional atoms from a set At
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can be added by passing to the functor that maps a set X to Q(At) × TX.
Instantiating to V = [0, 1], we obtain a basic modal logic of fuzzy relations, or in
description logic terminology Zadeh fuzzy ALC [53]. The corresponding instance
of quantitative coalgebraic predicate logic is essentially the Zadeh fragment of
Novak’s  Lukasiewicz fuzzy first order logic [43].

2. Probabilistic modal logic: As indicated in Section 2, coalgebras for the sub-
distribution functor S are probabilistic transition systems (with possible dead-
lock). We take V = [0, 1] and Λ = {♦}, interpreted by the predicate lifting

♦X(A)(µ) = Eµ(A) for µ ∈ SX

where Eµ(A) denotes the expected value of A(x) when x is distributed according
to µ. The induced instance of quantitative coalgebraic modal logic is (quantita-
tive) probabilistic modal logic [10], which may be seen as a quantitative variant
of two-valued probabilistic modal logic [39], and embeds into the probabilistic µ-
calculus [34,42]. Propositional atoms are treated analogously as in the previous
item (and indeed probabilistic modal logic is trivial without them). The ambient
quantitative probabilistic first-order logic arising as the corresponding instance
of quantitative coalgebraic predicate logic is a quantitative variant of Halpern’s
type-1 (i.e. statistical) probabilistic first-order logic [27].

3. Metric modal logic: In their simplest form, metric transition systems [3]
are just transition systems in which states are labelled in a metric space S
(numerous variants exist, e.g. with states themselves forming a metric space
or with transitions labelled in a metric space [9]). We work with a generalized
version where (S, dS) is a V-continuity space. Metric transition systems are then
coalgebras for the functor TX given on sets by TX = S × PX. We take Λ =
{♦} ∪ S. We interpret Λ using predicate liftings

♦X(A)(s,B) =
∨
{A(x) | x ∈ B} rX(A)(s,B) = dS(s, r)

for A ∈ QX, (s,B) ∈ TX, r ∈ S. Note that r ∈ S ignores its argument A, so is
effectively a nullary modality. Note also that as per our interpretation of truth
values, this nullary modality is read as distinctness from r; in case V = [0, 1],
the degree of equality to r can be expressed as 1 	 r. The induced instance
of coalgebraic modal logic is related to characteristic logics for branching-time
behavioural distances on metric transition systems [3,9].

4. Convex-nondeterministic metric modal logic: We continue to consider met-
ric transition systems as recalled in the previous item, reusing the designa-
tors T, S, dS , and taking V = [0, 1] for simplicity. Recall the value co-quantale I
of nonempty closed subintervals of [0, 1] from Example 3.11.4. We turn the predi-
cate liftings for r ∈ S defined in the previous item into I-valued predicate liftings
by prolonging them along the inclusion ι : [0, 1] ↪→ I, given by ι(a) = [a, a]. We
define an I-valued predicate lifting M for T , where I is the value quantale of
closed intervals introduced in Example 3.11.4, by

MX(A)(s,B) = [
∧
{π1(A(x)) | x ∈ B},

∨
{π2(A(x)) | x ∈ B}]

where πi : I → [0, 1] denote the evident projections π1([a, b]) = a, π2([a, b]) = b.
That is, M returns the range of truth values that A takes on B.
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5 Behavioural Distance and Quantitative Bisimulation
Invariance

The behavioural distance between states of a coalgebra α : A → TA is defined
as a least fixpoint that arises from an iterative process: Initially, at depth 0, all
states are thought of as equivalent and their distance is therefore 0. In order
to increase the depth of the behavioural distance from n to n + 1, we lift the
depth-n distance on A to a the set TA of successor structures. Formally, this
is accomplished using the following quantale-valued version of the coalgebraic
Kantorovich lifting [4,56]:

Definition 5.1 (Kantorovich lifting). Let A and B be sets and R : A→+ B.

1. A pair (f, g) of functions f : A→ V , g : B → V is R-nonexpansive if f(a)	
g(b) ≤ R(a, b) for all a ∈ A, b ∈ B.

2. The Kantorovich lifting of R is the relation KΛ(R) : TA→+ TB given by

KΛ(R)(t1, t2) =
∨
{λA(f)(t1)	 λB(g)(t2) | λ ∈ Λ, (f, g) R-nonexpansive}.

(Here, Λ is the set of modalities fixed in Section 4.) Generalizing [56, Theorem
5.6], we have:

Lemma 5.2. The Kantorovich lifting is a nonexpansive lax extension.

Example 5.3 (Kantorovich liftings).

1. For V = [0, 1] and V-valued fuzzy modal logic with Λ = {♦} (i.e. for
simplicity without propositional atoms; cf. Example 4.4.1), the Kantorovich lift-
ing KΛ(R) of a V-valued relation R : X→+ Y coincides with an asymmetric gen-
eralized Hausdorff lifting; i.e.

KΛ(R)(A,B) =
∨
x∈X

∧
y∈Y

((A(x)	B(y)) ∨ (A(x) ∧R(x, y)))

for A ∈ TX = X → V , B ∈ TY . (Obtaining a similar description
for general V remains an open problem.) In particular, on crisp sets A,B,
the symmetrization KΛ(R)s is the usual Hausdorff lifting KΛ(R)s(A,B) =
max(

∨
A(x)=1

∧
B(y)=1R(x, y),

∨
B(y)=1

∧
A(x)=1R(x, y)).

2. For probabilistic modal logic (Example 4.4.2), the restriction of KΛ to
distributions coincides, by definition, with the usual (symmetric) Kantorovich-
Wasserstein lifting (e.g. [10]). On subdistributions, one obtains an asymmetric
variant, whose symmetrization then coincides with the standard one.

3. For V-valued metric modal logic (Example 4.4.3), with Λ = {♦} ∪ S, we
similarly obtain a V-valued (asymmetric) Hausdorff distance

KΛ(R)((s,A), (t, B)) = d(s, t) ∨
∨
x∈A

∧
y∈B

R(x, y)

on (s,A) ∈ TX = S × P(X), (t, B) ∈ TY , and R : X →+ Y ; a characterization
that in this case holds for unrestricted V.
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4. Convex-nondeterministic metric modal logic: The I-valued Kantorovich
lifting induced by the set Λ = {M}∪S of modalities on metric transition systems,
with notation as in Examples 3.11.4 and 4.4.4, is given by

KΛ(R)((s,A), (t, B)) = ι(d(s, t))∨
[〈
∨
y∈B

∧
x∈A π1(R(x, y)),

∨
x∈A

∧
y∈B π2(R(x, y))〉]

on (s,A) ∈ TX = S×P(X), (t, B) ∈ TY , and R : X→+ Y (recall that the πi are
the projections I → [0, 1], and ι : [0, 1]→ I denotes the evident injection).

For purposes of lifting V-continuity structures as relations, nonexpansive pairs
can be replaced with the more familiar notion of nonexpansive map:

Lemma 5.4. Let (A, d) be a V-continuity space and let (f, g) be d-nonexpansive.
Put h(b) =

∨
a∈A f(a)	 d(a, b). Then f ≤ h ≤ g and h ∈ Pred(A, d).

By monotonicity of predicate liftings we get the following alternative formulation
for the Kantorovich lifting of a V-continuity structure:

Lemma 5.5. Let (A, d) be V-continuity space. Then for all t1, t2 ∈ TA

KΛ(d)(t1, t2) =
∨
{λA(h)(t1)	 λA(h)(t2) | λ ∈ Λ, h ∈ Pred(A, d)}.

Using the Kantorovich lifting, we can now define a sequence of behavioural
distances between states a, b in a T -coalgebras α : A→ TA, β : B → TB:

dK0 (a, b) = 0 dKn+1(a, b) = KΛ(dKn )(α(a), β(b)) dKω (a, b) =
∨
n<ω

dKn (a, b).

By general fixed point theory, the continuation of this ordinal-indexed sequence
past ω eventually stabilizes, that is, there exists some ordinal γ such that dKγ+1 =

dKγ . The arising least fixed point is the unbounded behavioural distance dK ,
alternatively given by

dK =
∧
{d | d = KΛ(d) ◦ (α× β)}.

These behavioural distances lead to an appropriate generalization of the notion
of bisimulation invariance. A family f of V-valued predicates fα indexed over
T -coalgebras α : A → TA – such as the extension of a modal formula or of
a first-order formula with a single free variable – is said to be behaviourally
nonexpansive if it is nonexpansive with respect to behavioural distance dK , i.e.
if for all coalgebras α : A→ TA, β : B → TB and all a ∈ A, b ∈ B,

fα(a)	 fβ(b) ≤ dK(a, b). (1)

Similarly, f is depth-n behaviourally nonexpansive for finite depth n if f is non-
expansive with respect to depth-n behavioural distance dKn .

To match these notions to the classical setting, consider the binary co-
quantale 2. In the general case, the above notion of behavioural nonexpansive-
ness should then be thought of as preservation under simulation: States a, b have
(asymmetric) distance 0 if b simulates a, and in this case, (1) stipulates that if f
is true at a, then f is also true at b.
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Example 5.6. The behavioural distance arising from the Kantorovich lifting of
metric modal logic (Example 5.3.3) is a simulation distance. The value dK(a, b)
quantifies the degree to which traces starting at b simulate traces starting at a,
where the distance from one trace to another is the supremum over the distances
at all time steps.

On the other hand, there are many cases where the behavioural distance dK is
symmetric. If V = [0, 1] and the set Λ is closed under duals (Remark 4.3), then
we have that KΛ(R∗) = KΛ(R)∗ for all R and therefore dK is symmetric [56].
Concretely, if we put �X(A) = 1	 ♦X(1	 A), then in the case of fuzzy modal
logic (Example 4.4.1) we have �X(A)(B) =

∧
{(1	B(x)) ∨ A(x) | x ∈ X} and

in the case of probabilistic modal logic (Example 4.4.2) we have �X(A)(µ) =
Eµ(A)⊕ (1	 µ(X)), and in both cases Λ = {♦,�} yields a symmetric distance.

In these symmetric cases distance 0 determines a notion of bisimilarity, and
behavioural nonexpansiveness amounts to the standard notion of bisimulation
invariance. Thus, the following straightforward lemma generalizes both bisimu-
lation invariance of modal logic and preservation of positive modal logic (with
only diamond modalities) under simulation:

Lemma 5.7. All modal formulae are behaviourally nonexpansive, and all modal
formulae of rank at most n are depth-n behaviourally nonexpansive.

As expected, coalgebra morphisms preserve behaviour on the nose:

Lemma 5.8. Let α : A → TA and β : B → TB be coalgebras and h : A → B a
coalgebra morphism, that is Th◦α = β ◦h. Then dK,s(a, h(a)) = 0 for all a ∈ A.

Another way to define distances between states of a coalgebra is in terms of the
modal formulae:

Definition 5.9 (Logical distance). Let a, b be states in coalgebras α : A →
TA, β : B → TB. We define

dLn(a, b) =
∨
{JϕK(a)	 JϕK(b) | ϕ ∈ LΛn}

dL(a, b) =
∨
{JϕK(a)	 JϕK(b) | ϕ ∈ LΛ}

The relationship between fixpoint-based distances dK and logical distances dL is
at the heart of the study of behavioural nonexpansiveness and modal expressive-
ness. For instance, Lemma 5.7 can equivalently be expressed by the inequalities
dL ≤ dK and dLn ≤ dKn , n < ω. In Section 6, we investigate the converse inequal-
ities.

6 Modal Approximation

We now establish our first contribution, a quantitative coalgebraic Hennessy-
Milner theorem. To this end, we first need to pin down the exact relationship of
the two families of distances at finite depth.
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Theorem 6.1. Let the set Λ of monotone and nonexpansive predicate liftings
from Section 4 be finite and let (A,α) be a coalgebra. For all n < ω:

1. We have dKn = dLn =: dn
2. The space (A, dn) is totally bounded.
3. The set LΛn is a dense subset of Pred(A, d).

Remark 6.2. The need for assuming that the set Λ of modalities is finite is
specific to quantitative Hennessy-Milner theorems (and implicitly present also
in the existing [0, 1]-valued version of the theorem [37]), and not needed in the
two-valued case [45,50]. It relates to the total boundedness claim in Theorem 6.1,
and features also in the van Benthem theorem, where in fact it is needed also
in the two-valued case [52]; indeed, proofs of the original van Benthem theorem
start by assuming, in that case w.l.o.g., that there are only finitely many propo-
sitional atoms and relational modalities. In our running examples, only the ones
featuring metric transition systems are affected by this assumption; indeed, for
our theorems to apply to such systems, the space of labels needs to be finite.

Theorem 6.1 is proven by induction on n and most of Section 6 is devoted to
the inductive step (the base case n = 0 is immediate from dK0 = dL0 = 0). We
fix a coalgebra α : A → TA and an integer n > 1 and assume as the inductive
hypothesis that the three items of Theorem 6.1 have already been proven for all
m < n. We show Item 1 in Lemma 6.3, Item 2 in Lemma 6.6, and Item 3 in
Lemma 6.7.

Lemma 6.3. We have dKn = dLn on A.

Proof (sketch). We use the alternative formula for the Kantorovich lifting as
given in Lemma 5.5. By Item 3 of the inductive hypothesis, and because the
predicate liftings are nonexpansive, the maps λ(f) ◦ α with f ∈ Pred(A, dn−1)
can be approximated using formula expansions JλψK with ψ ∈ LΛn−1. ut

Having shown that dKn = dLn , from now on we simply use dn to denote both.
To show that dn is totally bounded, we make use of the following version of the
Arzelà-Ascoli theorem [23, Theorem 4.13].

Lemma 6.4 (Arzelà-Ascoli). Let (X, d1) and (Y, d2) be totally bounded V-
continuity spaces. Then the space (X, d1)→1 (Y, d2) is also totally bounded.

Using Lemma 6.4, we show that the Kantorovich lifting preserves total bound-
edness; this generalizes a previous result for the case V = [0, 1] [37, Proposition
29], which in turn generalizes [57, Lemma 5.6].

Lemma 6.5. If the set Λ of predicate liftings is finite and (X, d) is a totally
bounded V-continuity space, then (TX,KΛ(d)) is totally bounded.

The following is now an easy consequence:

Lemma 6.6. The space (A, dn) is totally bounded.



A Quantified Coalgebraic van Benthem Theorem 15

Finally, we show that the modal formulae up to depth n form a dense subspace
of the space of all nonexpansive properties:

Lemma 6.7. Let f ∈ Pred(A, dn) be a nonexpansive map and let ε � 0. Then
there exists some modal formula ϕ ∈ LΛn such that d∨,sV (f, JϕK) ≤ ε.

Proof (sketch). We use the fact that for all x, y ∈ A

f(x) =
∧
y∈A dn(x, y)⊕ f(y) =

∧
y∈A(

∨
γ∈LΛn

JγK(x)	 JγK(y))⊕ f(y).

The latter term can be approximated using formulae of LΛn , where the infimum
over y and the supremum over γ are made finite using ε-covers of A and LΛn . ut

Having shown that behavioural distance and logical distance coincide at all fi-
nite depths, we are now equipped to prove our first main result, a version of the
Hennessy-Milner theorem stating that behavioural distance and logical distance
coincide not only at finite depths (Theorem 6.1.1), but in fact also at unbounded
depth. In general, this equivalence of distances can only be expected to hold if
the functor T in question is finitary, or admits approximation by a finitary sub-
functor [56]. The functor T is finitary if for all sets X and all t ∈ TX there exists
a finite subset Y ⊆ X such that t = Ti(s) for some s ∈ TY , where i : Y → X
is set inclusion. Examples of finitary functors include the finite powerset functor
PωX = {Y ⊆ X | Y finite} and the finite subdistribution functor Sω which maps
a set X to the set of finitely supported probability subdistributions on X. König
and Mika-Michalski [37] prove a quantitative coalgebraic Hennessy-Milner the-
orem for the case of the co-quantale [0, 1]. We generalize their result as follows:

Definition 6.8. We say that the value co-quantale V is continuous from below
if for every monotone increasing sequence (an)n<ω in V and every ε� 0, there
exists some n such that an ⊕ ε ≥

∨
n<ω an.

This condition essentially allows the use of epsilontic arguments also for joins
of increasing sequences, while value co-quantales in general allow this only for
meets. It holds in all our running examples.

Theorem 6.9 (Quantified Hennessy-Milner theorem). Let Λ be a finite
set of monotone and nonexpansive predicate liftings, let T be a finitary functor
and let V be a totally bounded value co-quantale that is continuous from below.
Then we have dK = dL.

Proof (sketch). Because V is continuous from below, we have KΛ(dKω ) =∨
n<ωKΛ(dKn ) on finite sets, and as T is finitary, this also holds for all sets.

This implies that dKω = dKω+1 = dK , so that

dK =
∨
n<ω d

K
n =

∨
n<ω d

L
n = dL. ut

Besides examples already covered by the [0, 1]-valued version of the theorem [37],
this result instantiates, e.g., to a quantitative Hennessy-Milner theorem for
convex-nondeterministic metric modal logic (Example 4.4.4).
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7 Locality and Modal Characterization

We proceed to establish our main result, the quantitative coalgebraic van Ben-
them theorem. The main tool in the proof of this result is a notion of locality,
which characterizes formulae that only depend on the structure of the model
in some neighbourhood of the state under consideration. This poses a challenge
when it comes to coalgebraic models, as these need not come with a built-in
graph structure that could be used to define what it means for two states to
be neighbouring. To solve this, we make use of a technique based on supported
coalgebras that has previously been used in the proof of a two-valued coalgebraic
van Benthem theorem [52].

Recall from Section 2 that we assume T∅ 6= ∅. We fix an element ⊥ ∈ T∅,
and for each set A put ⊥A = Ti(⊥), where i : ∅ → A is the empty map.

Definition 7.1 (Support). Let A be a set. We say that a set B ⊆ A is a
support of t ∈ TA if t ∈ TB. A supported coalgebra is a coalgebra α : A → TA
together with a map suppα : A → PA such that suppα(a) is a support of α(a)
for every a ∈ A.

Every coalgebra can be supported because we can always put suppα(a) = A for
all a ∈ A. Supporting a coalgebra equips it with a graph structure:

Definition 7.2 (Neighbourhood). Let A = (A,α, suppα) be a supported
coalgebra.

1. The Gaifman graph of A is the undirected graph with vertex set A and edge
set {{a, b} | b ∈ suppα(a)}.

2. For any a, b ∈ A, the Gaifman distance Dsupp (a, b) is the least number of
steps to get from a to b in the Gaifman graph (or ∞, if no path from a to b
exists).

3. The radius-k neighbourhood of a state a ∈ A is the set Uk(a) = {b ∈ A |
Dsupp (a, b) ≤ k}.

For any k < ω and any state a in a supported coalgebra A = (A,α, suppα),
we can define a supported coalgebra Aka = (Uk(a), αk, suppαk) on the radius-
k neighbourhood of a. The coalgebra map αk : Uk(a) → T (Uk(a)) is given
by αk(b) = α(b) if suppα(b) ⊆ Uk(a) and αk(b) = ⊥A otherwise. We note
that the latter case only occurs for states on the edge of Uk(a), that is when
Dsupp (a, b) = k. Note that ⊥A has empty support by construction, so that we
can put suppαk(b) = ∅ in this latter case and suppαk(b) = suppα(b) otherwise.

Using the neighbourhood around a state and the coalgebra structure defined
on it, we can now define our notion of locality:

Definition 7.3. A formula ϕ is k-local if we have JϕKα(a) = JϕKαk(a) for all
supported coalgebras A = (A,α, suppα) and all a ∈ A.

Lemma 7.4. For every supported coalgebra A = (A,α, suppα), k < ω and a ∈
A, we have dK,sk (a, a) = 0, where the first a lives in A and the second in Aka.
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A key step in the proof is the following locality result, which in similar form
appears also in proofs of the classical van Benthem theorem [44], and is proved,
in our case, by a game-theoretic method that is related to classical Ehrenfeucht-
Fräıssé games:

Lemma 7.5. Let ϕ(x) be a behaviourally nonexpansive formula with qr(ϕ) ≤ n.
Then ϕ is k-local for k = 3n.

Proof (sketch). Consider a spoiler-duplicator game over n rounds, where both
players place a pebble every round and the second player needs to maintain the
invariant that if there are m rounds remaining the radius 3m neighbourhoods
around the pebbles need to be isomorphic. One can show that this invariant
guarantees equivalence on formulae of rank at most m.

We use this game to prove for every supported coalgebra A that ϕ has the
same value on A and Aka. Nonexpansiveness of ϕ is used to extend the two
coalgebras in such a way that the duplicator always has a suitable response. ut

We next show that every nonexpansive formula that is local is also nonexpan-
sive at some finite depth. We make use of an unravelling construction, where a
coalgebra is enlarged so that the successors of every state in the unravelling (as
given by the support relation) form a tree.

Definition 7.6 (Unravelling). The unravelling of a supported coalgebra
A = (A,α, suppα) is the supported coalgebra A∗ = (A+, α∗, suppα∗), where
A+ is the set of nonempty sequences over A and for a1 . . . an ∈ A+ we
have α?(a1 . . . an) = Tf(α(an)) and suppα∗(a1 . . . an) = f [suppα(an)], where
f : A→ A+, a 7→ a1 . . . ana.

Lemma 7.7. For every supported coalgebra A = (A,α, suppα) and every a ∈ A,
we have dK,s(a, a) = 0, where the first a lives in A and the second in A∗.

The mentioned nonexpansiveness at finite depth follows:

Lemma 7.8. Let ϕ be behaviourally nonexpansive and k-local. Then ϕ is also
depth-k behaviourally nonexpansive.

Proof (sketch). By the assumptions on ϕ we may pass from any supported coal-
gebra to the radius-k neighbourhood in the unravelling, which is shaped like a
tree of depth k. Between any two such tree structures we have dKk = dK , as their
behaviour past depth k is fully characterized by the default value ⊥ ∈ T∅. ut

The target result then follows by combining the above lemmas with Theorem 6.1
and a final chain argument that allows us to detach the technical development
from the choice of a fixed coalgebra:

Theorem 7.9 (Quantified van Benthem theorem). Let Λ be a finite set
of monotone and nonexpansive predicate liftings, let T be a standard functor
with T∅ 6= ∅, and let V be a totally bounded value co-quantale. Then for ev-
ery behaviourally nonexpansive formula ϕ of quantitative coalgebraic predicate
logic with quantifier rank at most n and every ε � 0 there exists a modal
formula ψ ∈ LΛ such that for all coalgebras α : A → TA and all a ∈ A,
dsV(JϕKα(a), JψKα(a)) ≤ ε and the modal rank of ψ is bounded by 3n.
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Proof (sketch). Using the final chain (Tn1)n<ω, where 1 is a singleton set, we
can construct a coalgebra (Z, ζ) such that for all (A,α) and all ϕ,ψ we have
d∨,sV (JϕKα, JψKα) ≤ d∨,sV (JϕKζ , JψKζ).

As ϕ is behaviourally nonexpansive, we get that it is also depth-k be-
haviourally nonexpansive for k = 3qr(ϕ) by Lemmas 7.5 and 7.8, and by Theo-
rem 6.1.3 for every ε� 0 there is ψ ∈ LΛk such that d∨,sV (JϕKζ , JψKζ) ≤ ε. ut

To our best knowledge, the only previously known instances of this result in the
real-valued setting are the ones for [0, 1]-valued fuzzy modal logic [57] and for
quantitative probabilistic modal logic [58]. In the two-valued setting, we cover a
previous coalgebraic van Benthem result [52] by instantiating to V = 2, and in
fact obtain an additional asymmetric version, characterizing fragments that are
preserved under simulation. In our running examples, we obtain new concrete
van Benthem theorems for [0, 1]-valued metric modal logic (Example 4.4.3) and
convex-nondeterministic metric modal logic (Example 4.4.4). We cover, by de-
fault, the asymmetric case (to be thought of as characterizing fragments that are
preserved under quantitative simulation) and, in the cases V = [0, 1] and V = 2,
also the symmetric case (to be thought of as characterizing fragments that are
invariant under bisimulation).

8 Conclusions

We have established a highly general quantitative version of van Benthem’s
modal characterization theorem, stating that given a value quantale V that is
totally bounded and continuous from below, all state properties, in a given type
of quantitative systems, that are nonexpansive w.r.t. V-valued behavioural dis-
tance and expressible in V-valued coalgebraic (first-order) predicate logic can be
approximated by V-valued modal formulae of bounded rank. A key technical tool
in the proof are versions of the classical Arzela-Ascoli and Stone-Weierstraß the-
orems for totally bounded quantale-valued (pseudo-quasi-)metric spaces. Coalge-
braic generality implies that this result not only subsumes existing quantitative
van-Benthem type theorems for fuzzy [57] and probabilistic [58] systems, but
we also obtain new results, e.g. for metric transition systems. Via the additional
parametrization over a value quantale, we moreover obtain, e.g., a van Benthem
theorem for convex-nondeterministic behavioural distance (‘states x, y have dis-
tance between a and b’) on metric transition systems. Our result complements
previous coalgebraic results for two-valued logics [52]. We do leave some open
problems, in particular to determine whether the main result can be sharpened
to exact modal expressibility instead of approximability, and to obtain a quan-
titative modal characterization over finite models, in generalization of Rosen’s
finite-model variant of van Benthem’s theorem [48].

Acknowledgements We wish to thank Barbara König for valuable discussions.



A Quantified Coalgebraic van Benthem Theorem 19

References

1. Abriola, S., Descotte, M., Figueira, S.: Model theory of XPath on data trees. Part
II: Binary bisimulation and definability. Inf. Comput. (2017), in press
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