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Abstract5

State-based models of concurrent systems are traditionally considered under a variety of notions6

of process equivalence. In the case of labelled transition systems, these equivalences range from7

trace equivalence to (strong) bisimilarity, and are organized in what is known as the linear time8

– branching time spectrum. A combination of universal coalgebra and graded monads provides9

a generic framework in which the semantics of concurrency can be parametrized both over the10

branching type of the underlying transition systems and over the granularity of process equivalence.11

We show in the present paper that this framework of graded semantics does subsume the most12

important equivalences from the linear time – branching time spectrum. An important feature of13

graded semantics is that it allows for the principled extraction of characteristic modal logics. We14

have established invariance of these graded logics under the given graded semantics in earlier work; in15

the present paper, we extend the logical framework with an explicit propositional layer and provide16

a generic expressiveness criterion that generalizes the classical Hennessy-Milner theorem to coarser17

notions of process equivalence. We extract graded logics for a range of graded semantics on labelled18

transition systems and probabilistic systems, and give exemplary proofs of their expressiveness based19

on our generic criterion.20
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1 Introduction28

State-based models of concurrent systems are standardly considered under a wide range of29

system equivalences, typically located between two extremes respectively representing linear30

time and branching time views of system evolution. Over labelled transition systems, one31

specifically has the well-known linear time – branching time spectrum of system equivalences32

between trace equivalence and bisimilarity [42]. Similarly, e.g. probabilistic automata have33

been equipped with various semantics including strong bisimilarity [29], probabilistic (convex)34

bisimilarity [38], and distribution bisimilarity (e.g. [11,16]). New equivalences keep appearing35

in the literature, e.g. for non-deterministic probabilistic systems [5, 43].36

This motivates the search for unifying principles that allow for a generic treatment of37

process equivalences of varying degrees of granularity and for systems of different branching38

types (non-deterministic, probabilistic etc.). As regards the variation of the branching type,39

universal coalgebra [35] has emerged as a widely-used uniform framework for state-based40

systems covering a broad range of branching types including besides non-deterministic and41

probabilistic, or more generally weighted, branching also, e.g., alternating, neighbourhood-42

based, or game-based systems. It is based on modelling the system type as an endofunctor43

on some base category, often the category of sets.44
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32:2 Graded Monads and Graded Logics for the Linear Time – Branching Time Spectrum

Unified treatments of system equivalences, on the other hand, are so far less well-45

established, and their applicability is often more restricted. Existing approaches include46

coalgebraic trace semantics in Kleisli [18] and Eilenberg-Moore categories [5, 6, 23, 26, 39, 43],47

respectively. Both semantics are based on decomposing the coalgebraic type functor into48

a monad, the branching type, and a functor, the transition type (in different orders), and49

require suitable distributive laws between these parts; correspondingly, they grow naturally50

out of the functor but on the other hand apply only to functors that admit the respective51

form of decomposition. In the present work, we build on a more general approach introduced52

by Pattinson and two of us, based on mapping the coalgebraic type functor into a graded53

monad [31]. Graded monads correspond to algebraic theories where operations come with an54

explicit notion of depth, and allow for a stepwise evaluation of process semantics. Maybe most55

notably, graded monads systematically support a reasonable notion of graded logic where56

modalities are interpreted as graded algebras for the given graded monad. This approach57

applies to all cases covered in the mentioned previous frameworks, and additional cases that58

do not fit any of the earlier setups. We emphasize that graded monads are geared towards59

inductively defined equivalences such as finite trace semantics and finite-depth bisimilarity;60

we leave a similarly general treatment of infinite-depth equivalences such as infinite trace61

equivalence and unbounded-depth bisimilarity to future work. To avoid excessive verbosity,62

we restrict to models with finite branching throughout. Under finite branching, finite-depth63

equivalences typically coincide with their infinite-depth counterparts, e.g. states of finitely64

branching labelled transition systems are bisimilar iff they are finite-depth bisimilar, and65

infinite-trace equivalent iff they are finite-trace equivalent.66

Our goal in the present work is to illustrate the level of generality achievable by means of67

graded monads in the dimension of system equivalences. We thus pick a fixed coalgebraic68

type, that of labelled transition systems, and elaborate how a number of equivalences from69

the linear time – branching time spectrum are cast as graded monads. In the process, we70

demonstrate how to extract logical characterizations of the respective equivalences from most71

of the given graded monads. For the time being, none of the logics we find are sensationally72

new, and in fact van Glabbeek already provides logical characterizations in his exposition73

of the linear time – branching time spectrum [42]; an overview of characteristic logics for74

non-deterministic and probabilistic equivalences is given by Bernardo and Botta [2]. The75

emphasis in the examples is mainly on showing how the respective logics are developed76

uniformly from general principles.77

Using these examples as a backdrop, we develop the theory of graded monads and graded78

logics further. In particular,79

we give a more economical characterization of depth-1 graded monads involving only two80

functors (rather than an infinite sequence of functors);81

we extend the logical framework by a treatment of propositional operators – previously82

regarded as integrated into the modalities – as first class citizens;83

we prove, as our main technical result, a generic expressiveness criterion for graded logics84

guaranteeing that inequivalent states are separated by a trace formula.85

Our expressiveness criterion subsumes, at the branching-time end of the spectrum, the86

classical Hennessy-Milner theorem [19] and its coalgebraic generalization [33,36] as well as87

expressiveness of probabilistic modal logic with only conjunction [12]; we show that it also88

covers expressiveness of the respective graded logics for more coarse-grained equivalences89

along the linear time – branching time spectrum. To illustrate generality also in the branching90

type, we moreover provide an example in a probabilistic setting, specifically we apply our91

expressiveness criterion to show expressiveness of a quantitative modal logic for probabilistic92
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trace equivalence.93

Related Work Fahrenberg and Legay [17] characterize equivalences on the linear time –94

branching time spectrum by suitable classes of modal transition systems. We have already95

mentioned previous work on coalgebraic trace semantics in Kleisli and Eilenberg-Moore96

categories [5,6,18,23,26,39,43]. A common feature of these approaches is that, more precisely97

speaking, they model language semantics rather than trace semantics – i.e. they work in98

settings with explicit successful termination, and consider only successfully terminating99

traces. When we say that graded monads apply to all scenarios covered by these approaches,100

we mean more specifically that the respective language semantics are obtained by a further101

canonical quotienting of our trace semantics [31]. Having said that graded monads are102

strictly more general than Kleisli and Eilenberg-Moore style trace semantics, we hasten to103

add that the more specific setups have their own specific benefits including final coalgebra104

characterizations and, in the Eilenberg-Moore setting, generic determinization procedures. A105

further important piece of related work is Klin and Rot’s method of defining trace semantics106

via the choice of a particular flavour of trace logic [28]. In a sense, this approach is opposite107

to ours: A trace logic is posited, and then two states are declared equivalent if they satisfy108

the same trace formulae. In our approach via graded monads, we instead pursue the ambition109

of first fixing a semantic notion of equivalence, and then designing a logic that characterizes110

this equivalence. Like Klin and Rot, we view trace equivalence as an inductive notion, and111

in particular limit attention to finite traces; coalgebraic approaches to infinite traces exist,112

and mostly work within the Kleisli-style setup [7–10,20,25,41]. Jacobs, Levy and Rot [22]113

use corecursive algebras to provide a unifying categorical view on the above-mentioned114

approaches to traces via Kleisli- and Eilenberg-Moore categories and trace logics, respectively.115

This framework does not appear to subsume the approach via graded monads, and like for116

the previous approaches we are not aware that it covers semantics from the linear time –117

branching time spectrum other than the end points (bisimilarity and trace equivalence).118

2 Preliminaries: Coalgebra119

We recall basic definitions and results in (universal) coalgebra [35], a framework for the unified120

treatment of a wide range of reactive systems. We write 1 = {?} for a fixed one-element121

set, and ! : X → 1 for the unique map from a set X into 1. We write f · g for the composite122

of maps g : X → Y , f : Y → Z, and 〈f, g〉 : X → Y × Z for the pair map x 7→ (f(x), g(x))123

formed from maps f : X → Y , g : X → Z.124

Coalgebra encapsulates the branching type of a given species of systems as a functor, for125

purposes of the present paper on the category of sets. Such a functor G : Set→ Set assigns126

to each set X a set GX, whose elements we think of as structured collections over X, and to127

each map f : X → Y a map Gf : GX → GY , preserving identities and composition. E.g. the128

(covariant) powerset functor P assigns to each set X the powerset PX of X, and to each129

map f : X → Y the map Pf : PX → PY that takes direct images. (We mostly omit the130

description of the action of functors on maps in the sequel.) Systems with branching type131

described by G are then abstracted as G-coalgebras, i.e. pairs (X, γ) consisting of a set X132

of states and a map γ : X → GX, the transition map, which assigns to each state x ∈ X a133

structured collection γ(x) of successors. For instance, a P-coalgebra assigns to each state a134

set of successors, and thus is the same as a transition system.135

I Example 2.1. 1. Fix a set A of actions. The functor A× (−) assigns to each set X136

the set A × X; composing this functor with the powerset functor, we obtain the functor137
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G = P(A × (−)) whose coalgebras are precisely labelled transition systems (LTS): A G-138

coalgebra assigns to each state x a set of pairs (σ, y), indicating that y is a successor of x139

under the action σ.140

2. The (finite) distribution functor D maps a set X to the set of finitely supported discrete141

probability distributions on X. These can be represented as probability mass functions142

µ : X → [0, 1], with
∑
x∈X µ(x) = 1 and with the support {x ∈ X | µ(x) > 0} being finite.143

Coalgebras for D are precisely Markov chains. Composing with A× (−) as above, we obtain144

the functor D(A × (−)), whose coalgebras are generative probabilistic transition systems,145

i.e. assign to each state a distribution over pairs consisting of an action and a successor state.146

As indicated in the introduction, we restrict attention to finitary functors G, in which every147

element t ∈ GX is represented using only finitely many elements of X; formally, each set GX148

is the union of all sets GiY [GY ] where Y ranges over finite subsets of X and iY denotes the149

injection iY : Y ↪→ X. Concretely, this means that we restrict the set A of actions to be150

finite, and work with the finite powerset functor Pω (which maps a set X to the set of its151

finite subsets) in lieu of P. (D as defined above is already finitary.)152

Coalgebra comes with a natural notion of behavioural equivalence of states. A morphism153

f : (X, γ)→ (Y, δ) of G-coalgebras is a map f : X → Y that commutes with the transition154

maps, i.e. δ · f = Gf · γ. Such a morphism is seen as preserving the behaviour of states (that155

is, behaviour is defined as being whatever is preserved under morphisms), and consequently156

states x ∈ X, z ∈ Z in coalgebras (X, γ), (Z, ζ) are behaviourally equivalent if there exist157

coalgebra morphisms f : (X, γ) → (Y, δ), g : (Z, ζ) → (Y, δ) such that f(x) = g(z). For158

instance, states in LTSs are behaviourally equivalent iff they are bisimilar in the standard159

sense, and similarly, behavioural equivalence on generative probabilistic transition systems160

coincides with the standard notion of probabilistic bisimilarity [27]. We have an alternative161

notion of finite-depth behavioural equivalence: Given a G-coalgebra (X, γ), we define a162

series of maps γn : X → Gn1 inductively by taking γ0 to be the unique map X → 1, and163

γn+1 = Gγn · γ. (These are the first ω steps of the canonical cone from X into the final164

sequence of G [1].) Then states x, y in coalgebras (X, γ), (Z, ζ) are finite-depth behaviourally165

equivalent if γn(x) = ζn(y) for all n; in the case where G is finitary, finite-depth behavioural166

equivalence coincides with behavioural equivalence [44].167

3 Graded Monads and Graded Theories168

We proceed to recall background on system semantics via graded monads introduced in our169

previous work [31]. We formulate some of our results over general base categories C, using170

basic notions from category theory [30, 34]; for the understanding of the examples, it will171

suffice to think of C = Set. Graded monads were originally introduced by Smirnov [40]172

(with grades in a commutative monoid, which we instantiate to the natural numbers):173

I Definition 3.1 (Graded Monads). A graded monad M on a category C consists of a family174

of functors (Mn : C → C)n<ω, a natural transformation η : Id → M0 (the unit) and a175

family of natural transformations µnk : MnMk → Mn+k for n, k < ω, (the multiplication),176

satisfying the unit laws, µ0n · ηMn = idMn
= µn0 ·Mnη, for all n < ω, and the associative177

law µn,k+m ·Mnµ
km = µn+k,m · µnkMm for all k, n,m < ω.178

Note that it follows that (M0, η, µ
00) is a (plain) monad. For C = Set, the standard equivalent179

presentation of monads as algebraic theories carries over to graded monads. Whereas for180

a monad T , the set TX consists of terms over X modulo equations of the corresponding181
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algebraic theory, for a graded monad (Mn)n<ω, MnX consists of terms of uniform depth n182

modulo equations:g183

I Definition 3.2 (Graded Theories [31]). A graded theory (Σ, E, d) consists of an algebraic184

theory, i.e. a (possibly class-sized and infinitary) algebraic signature Σ and a class E of185

equations, and an assignment d of a depth d(f) < ω to every operation symbol f ∈ Σ. This186

induces a notion of a term having uniform depth n: all variables have uniform depth 0, and187

f(t1, . . . , tn) with d(f) = k has uniform depth n + k if all ti have uniform depth n. (In188

particular, a constant c has uniform depth n for all n ≥ d(c)). We require that all equations189

t = s in E have uniform depth, i.e. that both t and s have uniform depth n for some n.190

Moreover, we require that for every set X and every k < ω, the class of terms of uniform191

depth k over variables from X modulo provable equality is small (i.e. in bijection with a set).192

Graded theories and graded monads on Set are essentially equivalent concepts [31,40]. In193

particular, a graded theory (Σ, E, d) induces a graded monad M by taking MnX to be the194

set of Σ-terms over X of uniform depth n, modulo equality derivable under E.195

I Example 3.3. We recall some examples of graded monads and theories [31].196

1. For every endofunctor F on C, the n-fold compositionMn = Fn yields a graded monad197

with unit η = idId and µnk = idFn+k .198

2. As indicated in the introduction, distributive laws yield graded monads: Suppose that199

we are given a monad (T, η, µ), an endofunctor F on C and a distributive law of F over T200

(a so-called Kleisli law), i.e. a natural transformation λ : FT → TF such that λ · Fη = ηF201

and λ · Fµ = µF · Tλ · λT . Define natural transformations λn : FnT → TFn inductively by202

λ0 = idT and λn+1 = λnF · Fnλ. Then we obtain a graded monad with Mn = TFn, unit η,203

and multiplication µnk = µFn+1 · TλnF k. The situation is similar for distributive laws of T204

over F (so-called Eilenberg-Moore laws).205

3. As a special case of 2., for every monad (T, η, µ) on Set and every set A, we obtain a206

graded monad with MnX = T (An ×X). Of particular interest to us will be the case where207

T = Pω, which is generated by the algebraic theory of join semilattices (with bottom). The208

arising graded monad Mn = Pω(An × X), which is associated with trace equivalence, is209

generated by the graded theory consisting, at depth 0, of the operations and equations of210

join semilattices, and additionally a unary operation of depth 1 for each σ ∈ A, subject to211

(depth-1) equations expressing that these unary operations distribute over joins.212

Depth-1 Graded Monads and Theories where operations and equations have depth at213

most 1 are a particularly convenient case for purposes of building algebras of graded monads;214

in the following, we elaborate on this condition.215

I Definition 3.4 (Depth-1 Graded Theory [31]). A graded theory is called depth-1 if all its216

operations and equations have depth at most 1. A graded monad on Set is depth-1 if it can217

be generated by a depth-1 graded theory.218

I Proposition 3.5 (Depth-1 Graded Monads [31]). A graded monad ((Mn), η, (µnk)) on Set219

is depth-1 iff the diagram below is objectwise a coequalizer diagram in SetM0 for all n < ω:220

M1M0Mn

M1µ
0n

//

µ10Mn

//M1Mn
µ1n

//M1+n . (1)221

I Example 3.6. All graded monads in Example 3.3 are depth 1: for 1., this is easy to see,222

for 3., it follows from the presentation as a graded theory, and for 2., see [15].223
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32:6 Graded Monads and Graded Logics for the Linear Time – Branching Time Spectrum

One may use the equivalent property of Proposition 3.5 to define depth-1 graded monads over224

arbitrary base categories [31]. We show next that depth-1 graded monads may be specified225

by giving only M0, M1, the unit η, and µnk for n+ k ≤ 1.226

I Theorem 3.7. Depth-1 graded monads are in bijective correspondence with 6-tuples227

(M0,M1, η, µ
00, µ10, µ01) such that the given data satisfy all applicable instances of the graded228

monad laws.229

Semantics via Graded Monads We next recall how graded monads define graded semantics:230

I Definition 3.8 (Graded semantics [31]). Given a set functor G, a graded semantics for231

G-coalgebras consists of a graded monad ((Mn), η, (µnk)) and a natural transformation232

α : G→M1. The α-pretrace sequence (γ(n) : X →MnX)n<ω for a G-coalgebra γ : X → GX233

is defined by234

γ(0) = (X ηX−−→M0X) and γ(n+1) = (X αX ·γ−−−→M1X
M1γ

(n)

−−−−−→M1MnX
µ1n

X−−→Mn+1X).235

The α-trace sequence Tαγ is the sequence (Mn! · γ(n) : X →Mn1)n<ω.236

In Set, two states x ∈ X, y ∈ Y of coalgebras γ : X → GX and δ : Y → GY are α-trace237

(or graded) equivalent if Mn! · γ(n)(x) = Mn! · δ(n)(y) for all n < ω.238

Intuitively,MnX consists of all length-n pretraces, i.e. traces paired with a poststate, andMn1239

consists of all length-n traces, obtained by erasing the poststate. Thus, a graded semantics240

extracts length-1 pretraces from successor structures. In the following two examples we have241

M1 = G; however, in general M1 and G can differ (Section 4).242

I Example 3.9. Recall from Section 2 that a G-coalgebra for the functor G = Pω(A×−) is243

just a finitely branching LTS. We recall two graded semantics that model the extreme ends244

of the linear time – branching time spectrum [31]; more examples will be given in the next245

section246

1. Trace equivalence. For x, y ∈ X and w ∈ A∗, we write x w−→ y if y can be reached247

from x on a path whose labels yield the word w, and T (x) = {w ∈ A∗ | ∃y ∈ X. x w−→ y}248

denotes the set of traces of x ∈ X. States x, y are trace equivalent if T (x) = T (y). To249

capture trace semantics of labelled transition systems we consider the graded monad with250

MnX = P(An ×X) (see Example 3.3.3). The natural transformation α is the identity. For251

a G-coalgebra (X, γ) and x ∈ X we have that γ(n)(x) is the set of pairs (w, y) with w ∈ An252

and x w−→ y, i.e. pairs of length-n traces and their corresponding poststate. Consequently,253

the n-th component Mn! · γ(n) of the α-trace sequence maps x to the set of its length-n254

traces. Thus, α-trace equivalence is standard trace equivalence [42].255

Note that the equations presenting the graded monad Mn in Example 3.3.3 bear a striking256

resemblance to the ones given by van Glabbeek to axiomatize trace equivalence of processes,257

with the difference that in his axiomatization actions do not distribute over the empty join.258

In fact, a.0 = 0 is clearly not valid for processes under trace equivalence. In the graded259

setting, this equation just expresses the fact that a trace which ends in a deadlock after n260

steps cannot be extended to a trace of length n+ 1.261

2. Bisimilarity. By the discussion of the final sequence of a functor G (Section 2), the262

graded monad with MnX = GnX (Example 3.3.1), with α being the identity again, captures263

finite-depth behavioural equivalence, and hence behavioural equivalence when G is finitary.264

In particular, on finitely branching LTS, α-trace equivalence is bisimilarity in this case.265
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4 A Spectrum of Graded Monads266

We present graded monads for a range of equivalences on the linear time – branching time267

spectrum as well as probabilistic trace equivalence for generative probabilistic systems (GPS),268

giving in each case a graded theory and a description of the arising graded monads. Some269

of our equations bear some similarity to van Glabbeek’s axioms for equality of process270

terms. There are also important differences, however. In particular, some of van Glabbeek’s271

axioms are implications, while ours are purely equational; moreover, van Glabbeek’s axioms272

sometimes nest actions, while we employ only depth-1 equations (which precludes nesting of273

actions) in order to enable the extraction of characteristic logics later. All graded theories274

we introduce contain the theory of join semilattices, or in the case of GPS convex algebras,275

whose operations are assigned depth 0; we mention only the additional operations needed.276

We use terminology introduced in Example 3.9.277

Completed Trace Semantics refines trace semantics by distinguishing whether traces can278

end in a deadlock. We define a depth-1 graded theory by extending the graded theory for trace279

semantics (Example 3.3) with a constant depth-1 operation ? denoting deadlock. The induced280

graded monad has M0X = Pω(X), M1 = Pω(A×X + 1) (and MnX = Pω(An ×X +A<n)281

where A<n denotes the set of words over A of length less than n). The natural transformation282

αX : Pω(A×X)→M1X is given by α(∅) = {?} and α(S) = S ⊆ A×X+1 for ∅ 6= S ⊆ A×X.283

Readiness and Failures Semantics refine completed trace semantics by distinguishing which284

actions are available (readiness) or unavailable (failures) after executing a trace. Formally,285

given an LTS, seen as a coalgebra γ : X → Pω(A×X), we write I(x) = Pωπ1 ·γ(x) = π1[γ(x)]286

(π1 being the first projection) for the set of actions available at x, the ready set of x. A ready287

pair of a state x is a pair (w,A) ∈ A∗ × Pω(A) such that there exists z with x
w→ z and288

A = I(z); a failure pair is defined in the same way except that A ∩ I(z) = ∅. Two states are289

readiness (failures) equivalent if they have the same ready (failure) pairs.290

We define a depth-1 graded theory by extending the graded theory for trace semantics291

(Example 3.3) with constant depth-1 operations A for ready (failure) sets A ⊆ A. In case of292

failures we add a monotonicity condition A + A ∪ B = A ∪ B on the constant operations293

for the failure sets. The resulting graded monads both have M0X = PωX, and moreover294

M1X = Pω(A×X+PωA) for readiness andM1X = P↓ω(A×X+PωA) for failures, where P↓ω295

is down-closed finite powerset, w.r.t. the discrete order on A×X and set inclusion on PωA.296

The natural transformation αX : Pω(A×X)→M1X is defined by αX(S) = S ∪ {π1[S]} for297

readiness and αX(S) = S ∪ {A ⊆ A | A ∩ π1[S] = ∅} for failures semantics.298

Ready Trace and Failure Trace Semantics refine readiness and failures semantics, re-299

spectively, by distinguishing which actions are available (ready trace) or unavailable (fail-300

ure trace) at each step of the trace. Formally, a ready trace of a state x is a sequence301

A0a1A1 . . . anAn ∈ (PωA×A)∗×PωA such that there exist transitions x = x0
a1→ x1 . . .

an→ xn302

where each xi has ready set I(xi) = Ai. A failure trace has the same shape but we require303

that each Ai is a failure set of xi, i.e. I(xi)∩Ai = ∅. States are ready (failure) trace equivalent304

if they have the same ready (failure) traces.305

For ready traces, we define a depth-1 graded theory with depth-1 operations 〈A, σ〉306

for σ ∈ A, A ⊆ A and a depth-1 constant ?, denoting deadlock, and equations307

〈A, σ〉(
∑
j∈J xj) =

∑
j∈J〈A, σ〉(xj). The resulting graded monad is simply the graded308

monad capturing completed trace semantics for labelled transition systems where the set309

of actions is changed from A to PωA × A. For failure traces, we additionally impose the310

equation 〈A, σ〉(x) + 〈A∪B, σ〉(x) = 〈A∪B, σ〉(x), which in the set-based description of the311

graded monad corresponds to downward closure of failure sets.312
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The resulting graded monads both have M0X = PωX; for ready traces, M1X =313

Pω((PωA×A)×X + 1) and for failure traces, M1X = P↓ω((PωA×A)×X + 1), where P↓ω314

is down-closed finite powerset, w.r.t. the order imposed by the above equation.315

For ready trace semantics we define the natural transformation αX : Pω(A×X)→M1X316

by αX(∅) = {?} and αX(S) = {((π1[S], σ), x) | (σ, x) ∈ S}) for S 6= ∅. For failure traces we317

define αX(∅) = {?} and α(S) = {((A, σ), x) | (σ, x) ∈ S,A ∩ π1[S] = ∅} for S 6= ∅; note that318

in the latter case, α(S) is closed under decreasing failure sets.319

Simulation Equivalence declares two states to be equivalent if they simulate each other320

in the standard sense. We define a depth-1 graded theory with the same signature as for321

trace equivalence but instead of join preservation require only that each σ is monotone, i.e.322

σ(x + y) + σ(x) = σ(x + y). The arising graded monad Mn is equivalently described as323

follows. We define the sets MnX inductively, along with an ordering on MnX. We take324

M0X = PωX, ordered by set inclusion. We then order the elements of A ×MnX by the325

product ordering of the discrete order on A and the given ordering on MnX, and take326

Mn+1X to be the set of downclosed subsets of A×MnX, denoted P↓ω(A×MnX), ordered327

by set inclusion. The natural transformation αX : P(A×X)→ P↓ω(A×Pω(X)) is defined328

by αX(S) = ↓{(s, {x}) | (s, x) ∈ S}, where ↓ denotes downclosure.329

Ready Simulation Equivalence refines simulation equivalence by requiring additionally that330

related states have the same ready set. States x and y are ready similar if they are related by331

some ready simulation, and ready simulation equivalent if there are mutually ready similar.332

The depth-1 graded theory combines the signature for ready traces with the equations for333

simulation, i.e. only requires the operations 〈A, σ〉 to be monotone.334

Probabilistic Trace Equivalence is the standard trace semantics for generative probabilistic335

systems (GPS), equivalently, coalgebras for the functor D(A× Id) where D is the monad of336

finitary distributions (Example 2.1). Probabilistic trace equivalence is captured by the graded337

monad MnX = D(An×X), as described in Example 3.3.2. The corresponding graded theory338

arises by replacing the join-semilattice structure featuring in the above graded theory for trace339

equivalence by the one of convex algebras, i.e. the algebras for the monad D. Recall [13, 14]340

that a convex algebra is a set X equipped with finite convex sum operations: For every341

p ∈ [0, 1] there is a binary operation �p on X, and these operations satisfy the equations342

x�p x = x, x�p y = y�1−p x, x�0 y = y, x�p (y�q z) = (x�p/r y)�r z, where p, q ∈ [0, 1],343

x, y, z ∈ X, and r = (p+(1−p)q) > 0 (i.e. p+q > 0) in the last equation [21]. Again, we have344

depth-1 operations σ for action σ ∈ A, now satisfying the equations σ(x�p y) = σ(x)�pσ(y).345

5 Graded Logics346

Our next goal is to extract characteristic logics from graded monads in a systematic way,347

with characterizing meaning that states are logically indistinguishable iff they are equivalent348

under the semantics at hand. We will refer to these logics as graded logics; the implication349

from graded equivalence to logical indistinguishability is called invariance, and the converse350

implication expressiveness. E.g. standard modal logic with the full set of Boolean connectives351

is invariant under bisimilarity, and the corresponding expressiveness result is known as the352

Hennessy-Milner theorem. This result has been lifted to coalgebraic generality early on,353

giving rise to the coalgebraic Hennessy-Milner theorem [33, 36]. In previous work [31], we354

have related graded semantics to modal logics extracted from the graded monad in the355

envisaged fashion. These logics are invariant by construction; the main new result we present356

here is a generic expressiveness criterion, to be discussed in Section 6. The key ingredient357
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in this criterion are canonical graded algebras, which we newly introduce here, providing a358

recursive-evaluation style reformulation of the semantics of graded logics.359

A further key issue in characteristic modal logics is the choice of propositional operators;360

e.g. notice that when ♦σ denotes the usual Hennessy-Milner style diamond operator for an361

action σ, the formula ♦σ>∧ ♦τ> is invariant under trace equivalence (i.e. the corresponding362

property is closed under under trace equivalence) but the formula ♦σ(♦σ> ∧ ♦τ>), built363

from the former by simply prefixing with ♦σ, is not, the problem being precisely the use of364

conjunction. While in our original setup, propositional operators were kept implicit, that is,365

incorporated into the set of modalities, we provide an explicit treatment of propositional366

operators in the present paper. Besides adding transparency to the syntax and semantics,367

having first-class propositional operators will be a prerequisite for the formulation of the368

expressiveness theorem.369

Coalgebraic Modal Logic To provide context, we briefly recall the setup of coalgebraic370

modal logic [33, 36]. Let 2 denote the set {⊥,>} of Boolean truth values; we think of the371

set 2X of maps X → 2 as the set of predicates on X. Coalgebraic logic in general abstracts372

systems as coalgebras for a functor G, like we do here; fixes a set Λ of modalities (unary for373

the sake of readability); and then interprets a modality L ∈ Λ by the choice of a predicate374

lifting, i.e. a natural transformation375

JLKX : 2X → 2GX .376

By the Yoneda lemma, such natural transformations are in bijective correspondence with377

maps G2→ 2 [36], which we shall also denote as JLK. In the latter formulation, the recursive378

clause defining the interpretation JLφK : X → 2, for a modal formula φ, as a state predicate379

in a G-coalgebra γ : X → GX is then380

JLφK = (X γ−→ GX
GJφK−−−→ G2 JLK−−→ 2). (2)381

E.g. taking G = Pω(A×−) (for labelled transition systems), we obtain the standard semantics382

of the Hennessy-Milner diamond modality ♦σ for σ ∈ A via the predicate lifting383

J♦σKX(f) = {B ∈ Pω(A×X) | ∃x. (σ, x) ∈ B ∧ f(x) = >} (for f : X → 2).384

It is easy to see that coalgebraic modal logic, which combines coalgebraic modalities with385

the full set of Boolean connectives, is invariant under finite-depth behavioural equiva-386

lence (Section 2). Generalizing the classical Hennessy-Milner theorem [19], the coalgebraic387

Hennessy-Milner theorem [33,36] shows that conversely, coalgebraic modal logic characterizes388

behavioural equivalence, i.e. logical indistinguishability implies behavioural equivalence,389

provided that G is finitary (implying coincidence of behavioural equivalence and finite-depth390

behavioural equivalence) and Λ is separating, i.e. for every finite set X, the set391

Λ(2X) = {JLK(f) | f ∈ 2X}392

of maps GX → 2 is jointly injective.393

We proceed to introduce the syntax and semantics of graded logics.394

Syntax We parametrize the syntax of graded logics over395

a set Θ of truth constants,396

a set O of propositional operators with assigned finite arities, and397

a set Λ of modalities with assigned arities.398
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For readability, we will restrict the technical exposition to unary modalities; the treatment399

of higher arities requires no more than additional indexing (and we will use 0-ary modalities400

in the examples). E.g. standard Hennessy-Milner logic is given by Λ = {♦σ | σ ∈ A} and O401

containing all Boolean connectives. Other logics will be determined by additional or different402

modalities, and often by fewer propositional operators. Formulae of the logic are restricted403

to have uniform depth, where propositional operators have depth 0 and modalities have404

depth 1; a somewhat particular feature is that truth constants can have top-level occurrences405

only in depth-0 formulae. That is, formulae φ, φ1, . . . of depth 0 are given by the grammar406

φ ::= p(φ1, . . . , φk) | c (p ∈ O k-ary, c ∈ Θ),407

and formulae φ of depth n+ 1 by408

φ ::= p(φ1, . . . , φk) | Lψ (p ∈ O k-ary, L ∈ Λ)409

where φ1, . . . , φn range over formulae of depth n+ 1 and ψ over formulae of depth n.410

Semantics The semantics of graded logics is parametrized over the choice of a functor G, a411

depth-1 graded monad M = ((Mn)n<ω, η, (µnk)n,k<ω), and a graded semantics α : G→M1,412

which we fix for the remainder of the paper. It was originally given by translating formulae413

into graded algebras and then defining formula evaluation by the universal property of (Mn1)414

as a free graded algebra [31]; here, we reformulate the semantics in a more standard style by415

recursive clauses, using canonical graded algebras. In general, the notion of graded algebra is416

defined as follows [31].417

I Definition 5.1 (Graded algebras). Let n < ω. A (graded) Mn-algebra A =418

((Ak)k≤n, (amk)m+k≤n) consists of carrier sets Ak and structure maps419

amk : MmAk → Am+k420

satisfying the laws421

Ak M0Ak MmMrAk MmAr+k

Ak Mm+rAk Am+r+k

ηAk

a0k

Mma
rk

µmr
Ak am,r+k

am+r,k

(3)422

for all k ≤ n (left) and all m, r, k such that m + r + k ≤ n (right), respectively. An423

Mn-morphism f from A to an Mn-algebra B = ((Bk)k≤n, (bmk)m+k≤n) consists of maps424

fk : Ak → Bk, k ≤ n, such that fm+k · amk = bmk ·Mmfk for all m, k such that m+ k ≤ n.425

We view the carrier Ak of an Mn-algebra as the set of algebra elements that have already426

absorbed operations up to depth k. As in the case of plain monads, we can equivalently427

describe graded algebras in terms of graded theories: IfM is generated by a graded theory T =428

(Σ, E, d), then an Mn-algebra interprets each operation f ∈ Σ of arity r and depth d(f) = m429

by maps fAk : Ark → Am+k for all k such that m + k ≤ n; this gives rise to an inductively430

defined interpretation of terms (specifically, given a valuation of variables in Am, terms of431

uniform depth k receive values in Ak+m, for k +m ≤ n), and subsequently to the expected432

notion of satisfaction of equations.433

While in general, graded algebras are monolithic objects, for depth-1 graded monads we434

can construct them in a modular fashion from M1-algebras [31]; we thus restrict attention to435

M0- andM1-algebras in the following. We note that anM0-algebra is just an Eilenberg-Moore436



U. Dorsch and S. Milius and L. Schröder 32:11

algebra for the monad M0. An M1-Algebra A consists of M0-algebras (A0, a
00 : M0A0 → A0)437

and (A1, a
01 : M0A1 → A1), and a main structure map a10 : M1A0 → A1 satisfying two438

instances of the right-hand diagram in (3), one of which says that a10 is a morphism of439

M0-algebras (homomorphy), and the other that the diagram440

M1M0A0 M1A0 A1,
µ10

M1a
00

a10
(4)441

which by the laws of graded monads consists of M0-algebra morphisms, commutes (coequal-442

ization). We will often refer to an M1-algebra by just its main structure map.443

We will use M1-algebras as interpretations of the modalities in graded logics, generalizing444

the previously recalled interpretation of modalities as maps G2 → 2 in branching-time445

coalgebraic modal logic. We fix an M0-algebra Ω of truth values, with structure map446

o : M0Ω → Ω (e.g. for G = Pω, Ω is a join semilattice). Powers Ωn of Ω are again447

M0-algebras. A modality L ∈ Λ is interpreted as an M1-algebra A = JLK with carriers448

A0 = A1 = Ω and a01 = a00 = o. Such an M1-algebra is thus specified by its main structure449

map a10 : M1Ω→ Ω alone, so following the convention indicated above we often write JLK450

for just this map. The evaluation of modalities is defined using canonical M1-algebras:451

I Definition 5.2 (Canonical algebras). The 0-part of an M1-algebra A is the M0-algebra452

(A0, a
00). Taking 0-parts defines a functor U0 from M1-algebras to M0-algebras. An M1-453

algebra is canonical if it is free, w.r.t. U0, over its 0-part. For A canonical and a modality454

L ∈ Λ, we denote the unique morphism A1 → Ω extending an M0-morphism f : A0 → Ω to455

an M1-morphism A→ JLK by JLK(f), i.e. JLK(f) is the unique M0-morphism such that the456

following equation holds:457

(M1A0
M1f−−−→M1Ω JLK−−→ Ω) = (M1A0

a10

−−→ A1
JLK(f)−−−−→ Ω). (5)458

I Lemma 5.3. An M1-algebra A is canonical iff (4) is a (reflexive) coequalizer diagram in459

the category of M0-algebras.460

By the above lemma, we obtain a key example of canonical M1-algebras:461

I Corollary 5.4. If M is a depth-1 graded monad, then for every n and every set X, the462

M1-algebra with carriers MnX,Mn+1X and multiplication as algebra structure is canonical.463

Further, we interpret truth constants c ∈ Θ as elements of Ω, understood as maps ĉ : 1→ Ω,464

and k-ary propositional operators p ∈ O as M0-homomorphisms JpK : Ωk → Ω. In our465

examples on the linear time – branching time spectrum, M0 is either the identity or, most of466

the time, the finite powerset monad. In the former case, all truth functions areM0-morphisms.467

In the latter case, the M0-morphisms Ωk → Ω are the join-continuous functions; in the468

standard case where Ω = 2 is the set of Boolean truth values, such functions f have the form469

f(x1, . . . , xk) = xi1 ∨ · · · ∨ xil , where i1, . . . , il ∈ {1, . . . , k}. We will see one case where M0470

is the distribution monad; then M0-morphisms are affine maps.471

The semantics of a formula φ in graded logic is defined recursively as an M0-morphism472

JφK : (Mn1, µ0n
1 )→ (Ω, o) by473

JcK = (M01 M0ĉ−−−→M0Ω o−→ Ω) Jp(φ1, . . . , φk)K = JpK · 〈Jφ1K, . . . , JφkK〉 JLφK = JLK(JφK).474

The evaluation of φ in a coalgebra γ : X → GX is then given by composing with the trace475

sequence, i.e. as476

X
Mn!·γ(n)

−−−−−−→Mn1 JφK−−→ Ω. (6)477

In particular, graded logics are, by construction, invariant under the graded semantics.478
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I Example 5.5 (Graded logics). We recall the two most basic examples, fixing Ω = 2 in both479

cases, and > as the only truth constant:480

1. Finite-depth behavioural equivalence: Recall that the graded monad MnX = GnX481

captures finite-depth behavioural equivalence on G-coalgebras. Since M0 is the identity482

monad, M0-algebras are just sets. Thus, every function 2k → 2 is an M0-morphism, so483

we can use all Boolean operators as propositional operators. Moreover, M1-algebras are484

just maps a10 : GA0 → A1. Such an M1-algebra is canonical iff a10 is an isomorphism, and485

modalities are interpreted as M1-algebras G2 → 2, with the evaluation according to (5)486

and (6) corresponding precisely to the semantics of modalities in coalgebraic logic (2).487

Summing up, we obtain precisely coalgebraic modal logic as summarized above in this488

case. In our running example G = Pω(A × (−)), we take modalities ♦σ as above, with489

J♦σK : Pω(A × 2) → 2 defined by J♦σK(S) = > iff (σ,>) ∈ S, obtaining precisely classical490

Hennessy-Milner logic [19].491

2. Trace equivalence: Recall that the trace semantics of labelled transition systems with492

actions in A is modelled by the graded monad MnX = Pω(An ×X). As indicated above,493

in this case we can use disjunction as a propositional operator since M0 = Pω. Since the494

graded theory for Mn specifies for each σ ∈ A a unary depth-1 operation that distributes495

over joins, we find that the maps J♦σK from the previous example (unlike their duals �σ)496

induce M1-algebras also in this case, so we obtain a graded trace logic featuring precisely497

diamonds and disjunction, as expected.498

We defer the discussion of further examples, including ones where Ω = [0, 1], to the next499

section, where we will simultaneously illustrate the generic expressiveness result (Example 6.5).500

I Remark 5.6. One important class of examples where the above approach to characteristic501

logics will not work without substantial further development are simulation-like equivalences,502

whose characteristic logics need conjunction [42]. Conjunction is not an M0-morphism for503

the corresponding graded monads identified in Section 4, which both have M0 = Pω. A504

related and maybe more fundamental observation is that formula evaluation is not M0-505

morphic in the presence of conjunction; e.g. over simulation equivalence, the evaluation map506

M11 = P↓ω(A×Pω(1))→ 2 of the formula ♦σ>∧♦τ> fails to be join-continuous for distinct507

σ, τ ∈ A. We leave the extension of our logical framework to such cases to future work,508

expecting a solution in elaborating the theory of graded monads, theories, and algebras over509

the category of partially ordered sets, where simulations live more naturally (e.g. [24]).510

6 Expressiveness511

We now present our main result, an expressiveness criterion for graded logics, which states512

that a graded logic characterizes the given graded semantics if it has enough modalities513

propositional operators, and truth constants. Both the criterion and its proof now fall into514

place naturally and easily, owing to the groundwork laid in the previous section, in particular515

the reformulation of the semantics in terms of canonical algebras:516

I Definition 6.1. We say that a graded logic with set Ω of truth values and sets Θ, O, Λ of517

truth constants, propositional operators, and modalities, respectively, is518

1. depth-0 separating if the family of maps JcK : M01→ Ω, for truth constants c ∈ Θ, is519

jointly injective; and520

2. depth-1 separating if, whenever A is a canonical M1-algebra and A is a jointly injective521

set of M0-homomorphisms A0 → Ω that is closed under the propositional operators in O522
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(in the sense that JpK · 〈f1, . . . , fk〉 ∈ A for f1, . . . , fk ∈ A and k-ary p ∈ O), then the set523

Λ(A) := {JLK(f) : A1 → Ω | L ∈ Λ, f ∈ A} of maps is jointly injective.524

I Theorem 6.2 (Expressiveness). If a graded logic is both depth-0 separating and depth-1525

separating, then it is expressive.526

I Example 6.3 (Logics for bisimilarity). We note first that the existing coalgebraic Hennessy-527

Milner theorem, for branching time equivalences and coalgebraic modal logic with full Boolean528

base over a finitary functor G [33,36], as recalled in Section 5, is a special case of Theorem 6.2:529

We have already seen in Example 5.5 that coalgebraic modal logic in the above sense is530

an instance of our framework for the graded monad MnX = GnX. Since M0 = id in this531

case, depth-0 separation is vacuous. As indicated in Example 5.5, canonical M1-algebras are532

w.l.o.g. of the form id : GX → GX, where for purposes of proving depth-1 separation, we533

can restrict to finite X since G is finitary. Then, a set A as in Definition 6.1 is already the534

whole powerset 2X , so depth-1 separation is exactly the previous notion of separation.535

A well-known particular case is probabilistic bisimilarity on Markov chains, for which536

an expressive logic needs only probabilistic modalities ♦p ‘with probability at least p’ and537

conjunction [12]. This result (later extended to more complex composite functors [32]) is538

also easily recovered as an instance of Theorem 6.2, using the same standard lemma from539

measure theory as in op. cit., which states that measures are uniquely determined by their540

values on a generating set of the underlying σ-algebra that is closed under finite intersections541

(corresponding to the set A from Definition 6.1 being closed under conjunction).542

I Remark 6.4. For behavioural equivalence, i.e. MnX = GnX as in the above example, the543

inductive proof of our expressiveness theorem essentially instantiates to Pattinson’s proof of544

the coalgebraic Hennessy-Milner theorem by induction over the terminal sequence [33]. One545

should note that although the coalgebraic Hennessy-Milner theorem can be shown to hold for546

larger cardinal bounds on the branching by means of a direct quotienting construction [36],547

the terminal sequence argument goes beyond finite branching only in corner cases.548

I Example 6.5 (Expressive graded logics on the linear time – branching time spectrum). We next549

extract graded logics from some of the graded monads for the linear time – branching time550

spectrum introduced in Section 4, and show how in each case, expressiveness is an instance551

of Theorem 6.2. Bisimilarity is already covered by the previous example. Depth-0 separation552

is almost always trivial and not mentioned further. Unless mentioned otherwise, all logics553

have disjunction, enabled by M0 being powerset as discussed in the previous section. Most of554

the time, the logics are essentially already given by van Glabbeek (with the exception that555

we show that one can add disjunction) [42]; the emphasis is entirely on uniformization.556

1. Trace equivalence: As seen in Example 5.5, the graded logic for trace equivalence557

features (disjunction and) diamond modalities ♦σ indexed over actions σ ∈ A. The ensuing558

proof of depth-1 separation uses canonicity of a given M1-algebra A only to obtain that the559

structure map a10 is surjective. The other key point is that a jointly injective collection A of560

M0-homomorphisms A0 → 2, i.e. join preserving maps, has the stronger separation property561

that whenever x 6≤ y then there exists f ∈ A such that f(x) = > and f(y) = ⊥.562

2. Graded logics for completed traces, readiness, failures, ready traces, and failure traces563

are developed from the above by adding constants or additionally indexing modalities over564

sets of actions, with only little change to the proofs of depth-1 separation. For completed565

trace equivalence, we just add a 0-ary modality ? indicating deadlock. For ready trace566

equivalence, we index the diamond modalities ♦σ with sets I ⊆ A; formulae ♦σ,Iφ are then567

read ‘the current ready set is I, and there is a σ-successor satisfying φ’. For failure trace568
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equivalence we proceed in the same way but read the index I as ‘I is a failure set at the569

current state’. For readiness equivalence and failures equivalence, we keep the modalities ♦σ570

unchanged from trace equivalence and instead introduce 0-ary modalities rI indicating that I571

is the ready set or a failure set, respectively, at the current state, thus ensuring that formulae572

do not continue after postulating a ready set.573

I Example 6.6 (Probabilistic traces). We have recalled in Section 4 that probabilistic trace574

equivalence of generative probabilistic transition systems can be captured as a graded575

semantics using the graded monad MnX = D(An × X), with M0-algebras being convex576

algebras. In earlier work [31] we have noted that a logic over the set Ω = [0, 1] of truth577

values (with the usual convex algebra structure) featuring rational truth constants, affine578

combinations as propositional operators (as indicated in Section 5), and modal operators 〈σ〉,579

interpreted by M1-algebras J〈σ〉K : M1[0, 1]→ [0, 1] defined by J〈σ〉K(µ) =
∑
r∈[0,1] rµ(σ, r) is580

invariant under probabilistic trace equivalence. By our expressiveness criterion, we recover581

the result that this logic is expressive for probabilistic trace semantics (see e.g. [2]).582

7 Conclusion and Future Work583

We have provided graded monads modelling a range of process equivalences on the linear time584

– branching time spectrum, presented in terms of carefully designed graded algebraic theories.585

From these graded monads, we have extracted characteristic modal logics for the respective586

equivalences systematically, following a paradigm of graded logics that grows out of a natural587

notion of graded algebra. Our main technical results concern the further development of the588

general framework for graded logics; in particular, we have introduced a first-class notion of589

propositional operator, and we have established a criterion for expressiveness of graded logics590

that simultaneously takes into account the expressive power of the modalities and that of the591

propositional base. (An open question that remains is whether an expressive logic always592

exists, as it does in the branching-time setting [36].) Instances of this result include, for593

instance, the coalgebraic Hennessy-Milner theorem [33, 36], Desharnais et al.’s expressiveness594

result for probabilistic modal logic with only conjunction [12], and expressiveness for various595

logics for trace-like equivalences on non-deterministic and probabilistic systems. The emphasis596

in the examples has been on well-researched equivalences and logics for the basic case of597

labelled transition systems, aimed at demonstrating the versatility of graded monads and598

graded logics along the axis of granularity of system equivalence. The framework as a599

whole is however parametric also over the branching type of systems and in fact over the600

base category determining the structure of state spaces; an important direction for future601

research is therefore to capture (possibly new) equivalences and extract expressive logics on602

other system types such as probabilistic systems (we have already seen probabilistic trace603

equivalence as an instance; see [4] for a comparison of some equivalences on probabilistic604

automata, which combine probabilities and non-determinism) and nominal systems, e.g.605

nominal automata [3, 37]. Moreover, we plan to extend the framework of graded logics to606

cover also temporal logics, using graded algebras of unbounded depth.607

References608

1 Jirí Adámek and Václav Koubek. Remarks on fixed points of functors. In Fundamentals of609

Computation Theory, FCT 1977, LNCS, pages 199–205. Springer, 1977.610

2 Marco Bernardo and Stefania Botta. A survey of modal logics characterising behavioural611

equivalences for non-deterministic and stochastic systems. Math. Struct. Comput. Sci., 18:29–612

55, 2008.613



U. Dorsch and S. Milius and L. Schröder 32:15

3 Mikołaj Bojańczyk, Bartek Klin, and Slawomir Lasota. Automata theory in nominal sets. Log.614

Methods Comput. Sci., 10(3), 2014.615

4 Filippo Bonchi, Alexandra Silva, and Ana Sokolova. The power of convex algebras. In616

Concurrency Theory, CONCUR 2017, volume 85 of LIPIcs, pages 23:1–23:18. Schloss Dagstuhl617

- Leibniz-Zentrum für Informatik, 2017.618

5 Filippo Bonchi, Ana Sokolova, and Valeria Vignudelli. The theory of traces for systems with619

nondeterminism and probability. In Logic in Computer Science, LICS 2019. IEEE, 2019.620

6 Marcello Bonsangue, Stefan Milius, and Alexandra Silva. Sound and complete axiomatizations621

of coalgebraic language equivalence. ACM Trans. Comput. Log., 14, 2013.622

7 Corina Cîrstea. Maximal traces and path-based coalgebraic temporal logics. Theoret. Comput.623

Sci., 412(38):5025–5042, 2011.624

8 Corina Cîrstea. A coalgebraic approach to linear-time logics. In Foundations of Software625

Science and Computation Structures, FoSSaCS 2014, volume 8412 of LNCS, pages 426–440.626

Springer, 2014.627

9 Corina Cîrstea. Canonical coalgebraic linear time logics. In Algebra and Coalgebra in Computer628

Science, CALCO 2015, Leibniz International Proceedings in Informatics, 2015.629

10 Corina Cîrstea. From branching to linear time, coalgebraically. Fund. Inform., 150(3-4):379–406,630

2017.631

11 Yuxin Deng, Rob van Glabbeek, Matthew Hennessy, and Carroll Morgan. Characterising632

testing preorders for finite probabilistic processes. Log. Meth. Comput. Sci., 4(4), 2008.633

12 Josee Desharnais, Abbas Edalat, and Prakash Panangaden. A logical characterization of634

bisimulation for labeled Markov processes. In Logic in Computer Science, LICS 1998, pages635

478–487. IEEE Computer Society, 1998.636

13 Ernst-Erich Doberkat. Eilenberg-moore algebras for stochastic relations. Inf. Comput.,637

204(12):1756–1781, 2006.638

14 Ernst-Erich Doberkat. Erratum and addendum: Eilenberg-moore algebras for stochastic639

relations. Inf. Comput., 206(12):1476–1484, 2008.640

15 Ulrich Dorsch, Stefan Milius, and Lutz Schröder. Graded monads and graded logics for the641

linear time – branching time spectrum. https://arxiv.org/abs/1812.01317, 2019.642

16 Laurent Doyen, Thomas Henzinger, and Jean-François Raskin. Equivalence of labeled markov643

chains. Int. J. Found. Comput. Sci., 19(3):549–563, 2008.644

17 Uli Fahrenberg and Axel Legay. A linear-time-branching-time spectrum of behavioral specifi-645

cation theories. In Theory and Practice of Computer Science, SOFSEM 2017, volume 10139646

of LNCS, pages 49–61. Springer, 2017.647

18 Ichiro Hasuo, Bart Jacobs, and Ana Sokolova. Generic trace semantics via coinduction. Log.648

Meth. Comput. Sci., 3, 2007.649

19 M. Hennessy and R. Milner. Algebraic laws for non-determinism and concurrency. J. ACM,650

32:137–161, 1985.651

20 Bart Jacobs. Trace semantics for coalgebras. In J. Adámek and S. Milius, editors, Coalgebraic652

Methods in Computer Science, CMCS 2004, volume 106 of ENTCS, pages 167–184. Elsevier,653

2004.654

21 Bart Jacobs. Convexity, duality and effects. In C.S. Calude and V. Sassone, editors, Proc. TCS655

2010, volume 323 of IFIP AICT, pages 1–19, 2010.656

22 Bart Jacobs, Paul B. Levy, and Jurriaan Rot. Steps and traces. In Corina Cîrstea, editor,657

Proc. CMCS 2018, volume 11202 of LNCS, pages 122–143. Springer, 2018.658

23 Bart Jacobs, Alexandra Silva, and Ana Sokolova. Trace semantics via determinization. In659

Coalgebraic Methods in Computer Science, CMCS 2012, volume 7399 of LNCS, pages 109–129.660

Springer, 2012.661

24 Krzysztof Kapulkin, Alexander Kurz, and Jiri Velebil. Expressiveness of positive coalgebraic662

logic. In Advances in Modal Logic, AiML 2012, pages 368–385. College Publications, 2012.663

25 Henning Kerstan and Barbara König. Coalgebraic trace semantics for continuous probabilistic664

transition systems. Log. Meth. Comput. Sci., 9(4), 2013.665

CONCUR 2019

https://arxiv.org/abs/1812.01317


32:16 Graded Monads and Graded Logics for the Linear Time – Branching Time Spectrum

26 Christian Kissig and Alexander Kurz. Generic trace logics. arXiv preprint 1103.3239, 2011.666

27 Bartek Klin. Structural operational semantics for weighted transition systems. In Semantics667

and Algebraic Specification, volume 5700 of LNCS, pages 121–139. Springer, 2009.668

28 Bartek Klin and Juriaan Rot. Coalgebraic trace semantics via forgetful logics. In Foundations669

of Software Science and Computation Structures, FoSSaCS 2015, volume 9034 of LNCS, pages670

151–166. Springer, 2015.671

29 K. Larsen and A. Skou. Bisimulation through probabilistic testing. Inf. Comput., 94:1–28,672

1991.673

30 Saunders MacLane. Categories for the working mathematician. Springer, 2nd edition, 1998.674

31 Stefan Milius, Dirk Pattinson, and Lutz Schröder. Generic trace semantics and graded675

monads. In Algebra and Coalgebra in Computer Science, CALCO 2015, Leibniz International676

Proceedings in Informatics, 2015.677

32 Lawrence Moss and Ignacio Viglizzo. Final coalgebras for functors on measurable spaces. Inf.678

Comput., 204(4):610–636, 2006.679

33 D. Pattinson. Expressive logics for coalgebras via terminal sequence induction. Notre Dame J.680

Formal Log., 45:19–33, 2004.681

34 Benjamin Pierce. Basic category theory for computer scientists. MIT Press, 1991.682

35 J. Rutten. Universal coalgebra: A theory of systems. Theoret. Comput. Sci., 249:3–80, 2000.683

36 Lutz Schröder. Expressivity of coalgebraic modal logic: The limits and beyond. Theoret.684

Comput. Sci., 390:230–247, 2008.685

37 Lutz Schröder, Dexter Kozen, Stefan Milius, and Thorsten Wißmann. Nominal automata with686

name binding. In Foundations of Software Science and Computation Structures, FOSSACS687

2017, volume 10203 of LNCS, pages 124–142, 2017.688

38 Roberto Segala and Nancy Lynch. Probabilistic simulations for probabilistic processes. In689

Concurrency Theory, CONCUR 1994, volume 836 of LNCS, pages 481–496. Springer, 1994.690

39 Alexandra Silva, Filippo Bonchi, Marcello Bonsangue, and Jan Rutten. Generalizing deter-691

minization from automata to coalgebras. Log. Methods Comput. Sci, 9(1:9), 2013.692

40 A. Smirnov. Graded monads and rings of polynomials. J. Math. Sci., 151:3032–3051, 2008.693

41 Natsuki Urabe and Ichiro Hasuo. Coalgebraic infinite traces and Kleisli simulations. In Algebra694

and Coalgebra in Computer Science, CALCO 2015, volume 35 of LIPIcs, pages 320–335.695

Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2015.696

42 R. van Glabbeek. The linear time – branching time spectrum I; the semantics of concrete,697

sequential processes. In J. Bergstra, A. Ponse, and S. Smolka, editors, Handbook of Process698

Algebra, pages 3–99. Elsevier, 2001.699

43 Gerco van Heerdt, Justin Hsu, Joël Ouaknine, and Alexandra Silva. Convex language semantics700

for nondeterministic probabilistic automata. In Theoretical Aspects of Computing. ICTAC701

2018, volume 11187 of LNCS, pages 472–492. Springer, 2018.702

44 James Worrell. On the final sequence of a finitary set functor. Theor. Comput. Sci., 338:184–199,703

2005.704


	Introduction
	Preliminaries: Coalgebra
	Graded Monads and Graded Theories
	A Spectrum of Graded Monads
	Graded Logics
	Expressiveness
	Conclusion and Future Work

