
Partial Pushout Semantics of Generics in GDOL

Till Mossakowskia, Bernd Krieg-Brücknerb

a Institute for Intelligent Cooperating Systems, Faculty of Computer Science,
Otto-von-Guericke-Universität Magdeburg, Germany

bGerman Research Center for Artificial Intelligence (DFKI), CPS, BAALL, and
Universität Bremen, FB3 Mathematik und Informatik, Bremen, Germany

Abstract

We combine CASL’s pushout-style generic specification with DOL’s filtering, the
latter being a syntactic removal of parts of a specification. The challenge is that
now the body of a generic specification can remove parts of the formal parameter.
This cannot be handled with usual pushout semantics, but calls for a semantics
of “match, delete, glue in” as used in the theory of graph grammars. We hence
employ Heindel’s theory of MipMap categories as a basis for the use of pushouts
in categories of partial maps. We introduce a notion of MipMap institution that
can serve as a semantic background for a partial pushout semantics of generics
with filtering.

Keywords: generic specification; single-pushout transformation; institution;
category of partial maps

1. Introduction

1.1. Generic Specifications in CASL and filtering in DOL
CASL, the Common Algebraic Specification Language [1, 20, 3], is a com-

plex general-purpose specification language based on first-order logic with induc-
tion. CASL also provides powerful structuring constructs, including extensions,
unions, translations and generic specifications. CASL has been extended to
the Distributed Ontology, Modeling and Specification Language, DOL, an OMG
standard, [21, 18, 17]. DOL provides explicit language constructs for selecting
the logic, such that CASL’s structuring constructs can be used for a variety
of logics. Moreover, DOL provides further structuring constructs like filter-
ing, which expresses the syntactic removal of parts of a specification. However,
generic specifications are not part of DOL.

Generic Specifications in CASL are the basis for the semantics in GDOL
described in this paper, which extends DOL with generics. They have a prede-
cessor in SPECTRAL, a compact specification language for structuring specifi-
cations and programs in-the-large and in-the-small, which was designed by Don
Sannella and Bernd Krieg-Brückner, cf. [15]. General higher-order functions
yielding specifications were the basis for supporting the specification develop-
ment process and to enhance re-usability. While this intention was kept in

Preprint submitted to Elsevier September 5, 2017



CASL, higher-order functions on specifications were deemed not to be neces-
sary; now, more than 25 years later, this assessment might be reconsidered
eventually in GDOL.

However, specifications as parameters were retained in CASL and provide
an extremely powerful and compact way for defining applicability constraints in
applications (see below). Don was also instrumental in defining the semantics
of CASL, together with the first author among others, cf. [2].

In this paper, we will show how CASL generics can be combined with DOL
filtering in a semantically meaningful way, leading to the language GDOL.

1.2. Specification of containers in CASL
Consider the following specification of natural numbers and generic specifi-

cation of lists with a length operation in CASL:

1 spec Nat =
free type Nat ::= 0 | suc(Nat)

3 end
spec List[Nat then sort Elem] =

5 free type List[Elem] ::= [] | __::__(Elem; List[Elem])
op length : List[Elem] -> Nat

7 forall x : Elem; l : List[Elem]
. length([]) = 0

9 . length(x::l) = suc(length(l))
end

The specification Nat specifies the natural numbers as a free datatype (=term
algebra); details of the syntax will be explained below. The parameter of the
generic specification List is the specification Nat extended (“then”) by a spec-
ification consisting just of the sort Elem. Lists are specified as a free datatype
with two constructors (empty list and prepending an element to a list). Double
underscores declare infix notation, hence __::__ is written between its argu-
ments.

An instantiation of the generic specification of lists with Booleans (obtaining
lists of Booleans) looks as follows:

spec Boolean =
2 free type Boolean ::= True | False
end

4

spec List_of_Boolean =
6 List[Nat then Boolean fit sort Elem |-> sort Boolean]
end

Note that Nat implicitly is mapped identically here (it strictly speaking
should not be instaniated, but is a fixed specification called “import” in CASL).

If we want to remove the dependency on natural numbers (for example,
because we do not need them and want to speed up theorem proving), we can
use DOL filtering:

2



spec List_filtered[sort Elem] =
2 List[Nat then sort Elem]

reject sort Nat
4 end

The result is the removal of sort Nat and all operations and axioms mentioning
Nat. Note that CASL hiding has a different effect: here, Nat is only hidden
from the “export interface”, but not removed. In particular, for theorem proving
purposes, Nat will be uncovered.

Consider now the specification of finite sets over some element sort in CASL:

spec Set [Nat then sort Elem] =
2 generated type Set ::= empty | insert(Elem; Set)

pred __is_in__ : Elem * Set
4 forall e, e’:Elem; S, S’:Set

. not (e is_in empty)
6 . (e is_in insert (e’, S)) <=> e = e’ \/ (e is_in S)

. S = S’ <=> forall x:Elem . (x is_in S) <=> (x is_in S’)
8 %(equal_sets)%
end

Again, we can use DOL filtering for removing the dependency on natural num-
bers:

spec Set_filtered[sort Elem] =
2 Set[Nat then sort Elem]

reject sort Nat
4 end

Consider now the generic removal from Nat from containers like List and Set:

spec Container_filtered[Nat then sort Container] =
2 sort Container

reject sort Nat
4 end

This generic specification can be instantiated with lists and sets as defined above,
but also with other containers like bags or multisets.

1.3. Generic Ontology Design Patterns
Another motivation for this paper stems from research on Generic Ontology

Design Patterns, GODPs, [13, 14], with a focus on themethodological perspective
of providing safe ontology development. GODPs abstract away from application
domains to a generic methodological level, and are then instantiated to particu-
lar domains as part of an ontology engineering process. A repository of general
GODPs can be used to compile specific application-oriented patterns.

Since a GODP abstracts from a particular development fragment, it embod-
ies an ontology development operation, to be re-used in a variety of contexts.

Parameters to a GODP may be classes, properties, individuals, or whole
ontologies. Semantic pre-conditions may be stated by axioms in parameter

3



ontologies. Consistency is ensured by proving each ontology argument to comply
with its parameter.

A GODP is safe insofar as it can be separately defined and proved correct.
Changes are confined to the effects of GODP instantiation, checking arguments
for violation of semantic constraints; no other part of the host ontology is acci-
dentally affected.

The examples in [14] only treat generic specifications without filtering, i.e.
where the body extends the formal parameter, as allowed in CASL. However,
as an example for the general case of “repairing” some axiom to additionally
include an extension, consider a pattern for subclasses Z1 and Z2 of X with a
disjoint union axiom for the subclasses (we use the Web Ontology Language
OWL with Manchester syntax here, see the next section for some details):

ontology DisjointnessExtension
2 [Class: X Class: Z1 SubClassOf: X Class: Z2 SubClassOf: X]

[Class: Y] =
4 Class: Y SubClassOf: X

DisjointClasses: Y,Z1,Z2
6 reject DisjointClasses: Z1,Z2
end

If we now want to add another subclass Y, we have to “repair” the disjoint union
axiom to include Y by first rejecting the old axiom and then introducing the
extended one.

2. Institutions

The notion of institution [8] formalises the informal notion of logical system
and is used in the semantics of structuring and generic specification in both
CASL and DOL.

Definition 1. An institution is a quadruple I = (Sign,Sen,Mod, |=) consist-
ing of the following:

• a category Sign of signatures,

• a functor Sen:Sign−→Set1 giving, for each signature Σ, the set of sen-
tences Sen(Σ), and for each signature morphism σ: Σ−→Σ′, the sentence
translation map Sen(σ):Sen(Σ) −→ Sen(Σ′), where often Sen(σ)(ϕ) is
written as σ(ϕ),

• a functor Mod:Signop−→Cat2 giving, for each signature Σ, the category
of models Mod(Σ), and for each signature morphism σ: Σ −→ Σ′, the
reduct functor Mod(σ):Mod(Σ′)−→Mod(Σ), where often Mod(σ)(M ′)

1Set is the category having all small sets as objects and functions as arrows.
2Cat is the category of categories and functors. Strictly speaking, Cat is not a category but

only a so-called quasicategory, which is a category that lives in a higher set-theoretic universe.

4



is written as M ′ �σ, and M ′ �σ is called the σ-reduct of M ′, while M ′ is
called a σ-expansion of M ′�σ,

• a satisfaction relation |=Σ ⊆ |Mod(Σ)| × Sen(Σ) for each Σ ∈ |Sign|,

such that for each σ: Σ−→Σ′ in Sign the following satisfaction condition holds:

(?) M ′ |=Σ′ σ(ϕ) iff M ′�σ|=Σ ϕ

for each M ′ ∈ |Mod(Σ′)| and ϕ ∈ Sen(Σ), expressing that truth is invariant
under change of notation and context. �

Example 1. Many-sorted first-order logic with equality MSFOL=. A many-
sorted signature Σ = (S, F, P ) consists of a set S of sorts, a S∗×S-indexed familiy
F function symbols, where constants are treated as functions with no arguments,
and an S∗-indexed family P of predicate symbols. We write f : w → s ∈ F for
f ∈ Fw,s (with f : s for empty w), and p : w ∈ P for p ∈ Pw.

Given signatures Σ and Σ′, a signature morphism σ: Σ −→ Σ′ maps sorts,
function symbols and predicate symbols in Σ to symbols of the same kind in Σ′.
Profiles must be preserved, so for instance f : w → s in Σ maps to a function
symbol in Σ′ with profile σ∗(w)→ σ(s), where σ∗ is the extension of σ to finite
strings of symbols. Identities and composition are defined in the obvious way,
giving a category Sign of MSFOL=-signatures.

Given a finite string w = s1 . . . sn and sets Ms1 , . . . ,Msn , we write Mw for
the Cartesian product Ms1 × · · · × Msn . Let Σ = (S, F, P ). A many-sorted
Σ-model M consists of a non-empty carrier set Ms for each sort s ∈ S, a total
function (fw,s)M : Mw → Ms for each total function symbol f : w → s ∈ F ,
and a predicate (pw)M ⊆Mw for each predicate symbol p : w ∈ P .

Model homomorphisms are defined in the standard way.
Concerning reducts, if σ: Σ−→Σ′ is a signature morphism and M ′ is a Σ′-

model, thenM ′|σ is a Σ-model with (M ′|σ)s := M ′σ(s) for s ∈ S and analogously
for (fw,s)M ′|σ and (pw)M ′|σ . Reducts of homomorphisms are defined similarly.

First-order sentences over a signature are defined in the usual way, using log-
ical connectives and quantified variables. Sentence translation along a signature
morphism means replacement of the translated symbols. Finally, satisfaction of
a sentence in a model follows the usual Tarskian definition. For further details,
see [8]. �

Example 2. Many-sorted first-order logic with equality and sort generation
constraints MSCFOL=. MSCFOL= extends MSFOL= with sort generation
constraints. Given a many-sorted signature Σ = (S, F, P ), a sort generation
constraint is a pair (S0, F0), where S0 ⊆ S and F0 ⊆ F .3 A model M satisfies
(S0, F0), if for each element a of a carrier of a sort in S0, there is a term t in
operations from F0 and variables sorted outside S0, such that t evaluates to a
for some valuation of the variables. �

3Strictly speaking, sort generation constraints need a third component, a signature mor-
phism, ensuring that they can safely be translated along signature morphisms.

5



Sort generation constraints correspond to induction principles and can be
used for the specification of inductive datatypes. Consider the following speci-
fication of natural numbers:

spec Nat =
2 free type Nat ::= 0 | suc(Nat)
end

This is CASL shorthand notation for the following presentation in MSCFOL=:

1 spec Nat_expanded =
sort Nat

3 ops 0 : Nat; suc : Nat -> Nat
forall X1 : Nat; Y1 : Nat

5 . suc(X1) = suc(Y1) <=> X1 = Y1 %(ga_injective_suc)%
. not 0 = suc(Y1) %(ga_disjoint_0_suc)%

7 generated type Nat ::= 0 | suc(Nat) %(ga_generated_Nat)%
end

Here, the last axiom is the CASL notation for the sort generation constraint
({Nat}, {0, suc}).

Example 3. Description Logics. Signatures of the description logic ALC con-
sist of a set A of atomic concepts, a set R of roles and a set I of individual
constants, while signature morphisms provide respective mappings. Models are
single-sorted first-order structures that interpret concepts as unary and roles
as binary predicate symbols. Sentences are subsumption relations C1 v C2

between concepts, where concepts follow the grammar

C ::= A |> |⊥ |C1 t C2 |C1 u C2 | ¬C | ∀R.C | ∃R.C

These kind of sentences are also called TBox sentences. Sentences can also be
ABox sentences, which are membership assertions of individuals in concepts
(written a : C for a ∈ I) or pairs of individuals in roles (written R(a, b) for
a, b ∈ I, R ∈ R). Sentence translation and reduct is defined similarly as in
MSFOL=. Satisfaction is the standard satisfaction of description logics. See
[16] for a formalisation as an institution.

The logic SROIQ [11], which is the logical core of the Web Ontology Lan-
guage OWL-DL 2.04 extends ALC with the following constructs: (i) complex
role boxes (denoted by SR): these can contain: complex role inclusions such
as R ◦ S v S as well as simple role hierarchies such as R v S, assertions
for symmetric, transitive, reflexive, asymmetric and disjoint roles (called RBox
sentences), as well as the construct ∃R.Self (collecting the set of ‘R-reflexive
points’); (ii) nominals (denoted by O); (iii) inverse roles (denoted by I); quali-
fied and unqualified number restrictions (Q). For details on the rather complex
grammatical restrictions for SROIQ (e.g. regular role inclusions, simple roles)

4See also http://www.w3.org/TR/owl2-overview/

6



compare [11], and see the example given below. SROIQ can be straightfor-
wardly rendered as an institutions following the previous examples, but compare
also [16]. �

Within an arbitrary but fixed institution, we can easily define the usual no-
tion of logical consequence or semantical entailment : Given a set of Σ-sentences
Γ and a Σ-sentence ϕ, we say

Γ |=Σ ϕ (ϕ follows from Γ)

iff for all Σ-models M , we have

M |=Σ Γ implies M |=Σ ϕ.

Here, M |=Σ Γ means that M |=Σ ψ for each ψ ∈ Γ.
Given a set of Σ-sentences Γ, we write Γ• for the set {ϕ ∈ Sen(Σ) | Γ |= ϕ}

of logical consequences of Γ. Γ1,Γ2 ⊆ Sen(Σ) are logically equivalent, written
Γ1 |=|Γ2, if Γ1 |= Γ2 and Γ2 |= Γ1 (or equivalently, Γ•1 = Γ•2).

In an arbitrary institution I, a presentation is a pair T = 〈Σ,Γ〉, where
Σ ∈ Sign and Γ ⊆ Sen(Σ). We denote Σ with TΣ and Γ with TΓ. Presentation
morphisms σ: 〈Σ,Γ〉 −→ 〈Σ′,Γ′〉 are those signature morphisms σ: Σ−→Σ′ for
which Γ′ |=Σ′ σ(Γ), or, in other words σ(Γ) ⊆ Γ′

•. By inheriting composition
and identities from Sign, we obtain a category Pres of presentations.

A presentation morphism σ: 〈Σ,Γ〉−→〈Σ′,Γ′〉 is conservative, if Γ |= σ−1(Γ′).
We will also freely use other standard logical terminology when working

within an arbitrary but fixed institution. Moreover, in such an arbitrary insti-
tution, we can use filtering.

2.1. Filtering in DOL
We now introduce filtering in DOL [17] in a simplified form. For filtering to

be well-defined, we need to assume some inclusion system [4] on the signature
category, such that set-theoretic notions on signatures make sense.

Filtering takes a presentation 〈Σ,Γ〉 and removes some parts. A filtering

〈Σ,Γ〉 select 〈Σ0,Γ0〉

(with Σ0 ⊆ Σ and Γ0 ⊆ Γ) selects those sentences from 〈Σ,Γ〉 that have signa-
ture Σ0, plus those in Γ0. We can also write

〈Σ,Γ〉 reject 〈Σ0,Γ0〉

where Σ0 is the set of symbols and Γ0 the set of axioms to be hidden. For
example, we can select all axioms of the GALEN anatomy ontology5 involving
Drugs, Joints, or Bodyparts by:

5We assume that GALEN is available as an OWL ontology.

7



logic OWL
2 ontology myGalen =

<http://example.org/GALEN/galen.owl>
4 select Drugs, Joints, Bodyparts
end

The semantics of 〈Σ,Γ〉 select 〈Σ0,Γ0〉 is given by the presentation 〈Σ′,Γ′〉,
where

• Σ′ is the smallest signature with Σ0 ⊆ Σ′ ⊆ Σ and Γ0 ⊆ Sen(Σ′)6 and

• Γ′ = (Γ ∩ Sen(Σ′)) ∪ Γ0.

The semantics of 〈Σ,Γ〉 reject 〈Σ0,Γ0〉 is given by the presentation 〈Σ′,Γ′〉,
where

• Σ′ = Σ \ Σ0 and

• Γ′ = (Γ ∩ Sen(Σ′)) \ Γ0.

3. Semantics for generics with filtering

We now investigate how a semantics of generics with filtering in GDOL that
builds on the current semantics generic in CASL and filtering in DOL could
look.

3.1. Double-pushout semantics
The well-known pushout-style semantics [7, 20] formalises a generic spec-

ification as a morphism PAR → BODY . The application of such a generic
specification to an argument specification ARG requires a fitting morphism
PAR → ARG. The resulting specification is then obtained as the following
pushout:

PAR //

��

BODY

��
ARG // RESULT

However, this prevents symbols in the parameter from being deleted in the
body — the paramater is always included in the body. The possibility of deleting
symbols from the parameter requires a more general situation like this:

PAR

��

INTERFACE

��

oo // BODY

��
ARG ARG_INTERFACEoo // RESULT

6If this smallest signature does not exist, the semantics is undefined.

8



This resembles the double-pushout approach used in algebraic graph trans-
formation. Indeed, graph transformation rules correspond to embeddings of the
parameter into the body of a generic specification, and matches between the left
hand-side of a rule correspond to fitting morphisms mapping the parameter to
the argument instantiating a generic specification.

The proper abstract framework for the double-pushout approach to algebraic
graph transformations is that of (weak) adhesive HLR categories [5]. A crucial
result for weak adhesive HLR categories is the following:

Theorem 1 (Uniqueness of pushout complements [5]). Given k : INTERFACE →
PAR ∈ M and s : PAR → ARG, then there is, up to isomorphism, at most
one ARG_INTERFACE with l : INTERFACE → ARG_INTERFACE
and u : ARG_INTERFACE → ARG such that the following is a pushout.

PAR

s

��

INTERFACE

l

��

k
oo

ARG ARG_INTERFACE
u

oo

The property that such a pushout exists is called the glueing condition. In
case that the glueing condition holds, the application of the generic specification

PAR INTERFACEoo // BODY

to an argument ARG is then given by

PAR

��

INTERFACE

��

oo // BODY

��
ARG ARG_INTERFACEoo // RESULT

A counterexample (formulated in CASL [20, 3]) to the glueing condition is
the following:

1 spec DELETE_SORT[sorts s,t] = reject t then sort u end
spec DELETE_SORT_INST = DELETE_SORT[sorts s,t; ops f:s->s; g:s->t]

leading to the following diagram:

sorts s,t

��

sort s
oo

sorts s,t; ops f:s->s; g:s->t

This cannot be complemented to a pushout, because the operation op g:s->t
is “dangling”: the sort t is missing in the interface. Still, we would like such

9



a generic specifications to be well-formed, with the following result, where the
dangling operation is just deleted:

sorts s,t

��

sort s
oo //

��

sort s,u

��
sorts s,t; ops f:s->s; g:s->t sort s

oo // sort s,u; op f:s->s

3.2. Single-pushout semantics with partial maps
This bevaviour can be achieved using the single-pushout (SPO) approach

to graph transformation [6], where pushouts in a category of partial maps are
used:

PAR o //

��

BODY

��
ARG o // RESULT

Here, a partial map PAR o // BODY is represented by a span

PAR INTERFACEoo // BODY

where the left arrow is a suitable monomorphism representing the domain of
the partial map. The existence of pushouts of such partial maps is guaranteed
in MipMap categories [9]. We hence recall this notion. It depends on a suitably
chosen class M of monomorphisms representing domains of the partial maps.
Suitability of such a choice is defined as follows:

Definition 2 (Admissible class of monos [22]). A class M of monos in a
category C is admissible, if

1. C has pullbacks alongM-morphisms,

2. M is stable under pullback,

3. M contains all identities, and

4. M is closed under composition.

In the sequel, we assume that an arbitrary but fixed category C with an
admissible class M is given. For an object A in C, we can then define the
lattice (SubMA,v) of subobjects of A consisting of equivalence classes [m] of
morphisms m : M ↪→ A ∈ M taken up to isomorphism in the comma category
(C, A). The ordering is defined by m v n if there exists some i with m = i;n.

Partial maps with domains fromM are defined as follows:

Definition 3 (Category of partial maps [22]). The category C∗M of M-
partial maps has the same objects as C. Morphisms from [(m,X, f)] : A → B

are spans A X
moo f // B in C with m ∈ M, taken up to isomorphism

10



of spans. Identities in C∗M are [(idA, A, idA)] and composition is defined by
pulling back. A partial map [(m,X, f)] is called total if m is an isomorphism.
The embedding functor Γ : C → C∗M is the identity on objects and maps a
morphism f : A→ B to the total map [(idA, A, f)] : A→ B.

Definition 4 (Inverse image [22]). Given a morphism f : A → B ∈ C∗M,
we can take inverse images against f using pullbacks. The inverse image function
f−1 : SubMB → SubMA takes [m] ∈ SubMB to [m′] ∈ SubMA given by a
pullback

M ′ //
��
m′

��

M
��
m

��
A

f // B

Definition 5 (Upper adjoint to inverse image [9]). Given a morphism f :
A→ B ∈ C∗M, a monotone function U : SubMA→ SubMB is an upper adjoint
to f−1 if for all n ∈ SubMB and all m ∈ SubMA, we have

f−1(n) v m iff n v U(m)

If such an upper adjoint exists, it is denoted by ∀f .

Definition 6 (Hereditary pushout [12]). A pushout in C is hereditary if Γ
maps it to a pushout in C∗M.

This terminology now allows for a characterisation of the existence of pushouts
of partial maps:

Theorem 2 (Existence of pushouts of partial maps [9]). Given a category
C with cocones of spans and an admissible class of monos M, the category of
partial maps C∗M has pushouts if and only if C has hereditary pushouts and
upper adjoints of inverse images.

This theorem justifies the following terminology:

Definition 7 (MipMap category [9]). A categoryC with an admissible class
of monosM is called a MipMap category, if C has hereditary pushouts and up-
per adjoints of inverse images.

An easy way to show that a category is MipMap is to show that it is a topos:

Theorem 3 ([9]). Each topos is MipMap.

In order to use the notion of MipMap category for institutions, we need a
slight additional condition basically ensuring that inverse images of symbol sets
lead to inverse images of sentence sets.

Definition 8 (MipMap institution). An institution is a MipMap institution
if its signature category is MipMap, and moreover the sentence functor maps
pullbacks alongM-morphisms to pullbacks in Set.

11



Example 4. OWL is a MipMap institution, because its signature category is
Set3, which is a (presheaf) topos, and hence MipMap by Thm. 3. M is the
class of all monomorphisms (i.e. the component-wise injections.) Preservation
of pullbacks along morphisms inM is straightforward to show. �

Example 5. MSFOL= is a MipMap institution. M is the class of all monomor-
phisms. Again, preservation of pullbacks along morphisms inM is straightfor-
ward to show. We show that the MSFOL= signature category is a topos; then
the MipMap property follows by Thm. 3.

We first need to show the existence of finite limits. The terminal MSFOL=

signature 1 is given by one sort, one function symbol and one predicate symbol of
each arity. Concerning products, given Σ1 = (S1, F1, P1) and Σ2 = (S2, F2, P2),
the product Σ1 × Σ2 = (S, F, P ) has sorts S = S1 × S2. F(s1,t1)...(sn,tn)→(s,t) =
(F1)s1...sn→s× (F2)t1...tn→t, that is, if f1 : s1 . . . sn → s ∈ F1 and f2 : t1 . . . tn →
t ∈ F2, then (f1, f2) : (s1, t1) . . . (sn, tn)→ (s, t) ∈ F . Likewise, P(s1,t1)...(sn,tn) =
(P1)s1...sn × (P2)t1...tn . Concerning equalisers, given Σ1 = (S1, F1, P1) and
Σ2 = (S2, F2, P2) and σ1, σ2 : Σ1 → Σ2, the equaliser

(S, F, P ) = Σ // σ // Σ1

σ1 //
σ2

// Σ2

is given by S = {s ∈ S1 | σ1(s) = σ2(s)}, F = {f : w → s ∈ F1 | σ1(f : w →
s) = σ2(f : w → s)} and P = {p : w ∈ P1 | σ1(p : w) = σ2(p : w)}. σ is the
inclusion.

Next we come to exponentials. Given Σ1 = (S1, F1, P1) and Σ2 = (S2, F2, P2),
ΣΣ2

1 = (S, F, P ) has sorts S = SS2
1 . Moreover, (f, s1, . . . , sn, s) : t1 . . . tn → t ∈

F iff t1 = . . . = tn = t, f ∈
(
(F1)t(s1)...t(sn)→t(s)

)(F2)s1...sn→s and s1 . . . sn, s ∈
S2. For predicate symbols, (p, s1, . . . , sn) : t1 . . . tn ∈ P iff either n > 0,
t1 = . . . = tn, p ∈

(
(P1)t1(s1)...t1(sn)

)(P2)s1...sn and s1 . . . sn ∈ S2, or n = 0

and p ∈ ((P1)ε)
(P2)ε , where ε is the empty word. The evaluation morphism

eval : Σ2 × ΣΣ2
1 → Σ1 is like that in Set for sorts, i.e. a pair (s ∈ S2, t ∈ SS2

1 )
is mapped to t(s). Concerning operation symbols, a pair (f : s1 . . . sn → s ∈
Σ2, (h, s1, . . . , sn, s) : t . . . t → t ∈ ΣΣ2

1 ) is mapped to h(f) : t(s1) . . . t(sn) →
t(s) ∈ Σ1. Likewise, a predicate symbol (p : s1 . . . sn ∈ Σ2, (h, s1, . . . , sn) :
t . . . t ∈ ΣΣ2

1 ) is mapped to h(p) : t(s1) . . . t(sn) ∈ Σ1. It is straightforward to
show the universal property, which means that we have shown cartesian closed-
ness.

Finally, the subobject classifier Ω = (S, F, P ) is given by sorts S = {>,⊥}.
Operation symbols are > : > . . .> → > (arbitrarily many arguments of sort >)
and ⊥ : s1 . . . sn → s where s1, . . . , sn, s ∈ {>,⊥}. Similarly for predicate sym-
bols. The signature morphism > : 1→ Ω maps to the sort >, operation symbols
> : > . . .> → > and predicate symbols > : > . . .>. Let us now show the sub-
object classifier property. Given a signature monomorphism Σ0

// σ // Σ with
Σ0 = (S0, F0, P0), let χσ : Σ→ Ω act on sorts as

χσ(s) =

{
>, if s ∈ σ(S0)
⊥, otherwise ,

12



on operation symbols as

χσ(f : s1 . . . sn → s) =

{
>:χσ(s1) . . . χσ(sn)→ χσ(s), if f : s1 . . . sn → s ∈ σ(F0)
⊥:χσ(s1) . . . χσ(sn)→ χσ(s), otherwise

and similarly on predicate symbols. Then it is straightforward to show that

Σ0
! //

��
σ

��

1
��
>
��

Σ
χσ // Ω

is a pullback. Moreover, χσ is unique with this property. �

3.3. Semantics of generics with filtering
Our central result provides the semantics of generics with filtering:

Theorem 4. In a MipMap institution with admissible class of monos MSign,
the category of presentations is MipMap, if its admissible class of monosMPres

is taken to be all conservative presentation morphisms with underlying signature
morphism inMSign.

This means that in a MipMap institution, for each span of presentations
representing a generic specification and each fitting map into an argument pre-
sentation

PAR

��

INTERFACEoo // BODY

ARG

the instantiating pushout exists.
In order to prove theorem 4, we first need to cite the following characterisa-

tion:

Theorem 5 (Characterisation of hereditary pushouts [10, 12]). A pushout
in C

A
f

��

g // C

k~~
B

h // D

13



is hereditary if and only if for every completion to a cube

A′

f ′

��

g′ //
��

a

��

C ′

k′��

��

c

��

B′
h′ //

��

b

��

D′

d

��

A
f

~~

g // C

k}}
B

h // D

with b, c ∈M and the back faces pullbacks, the top face is a pushout iff the front
faces are pullbacks and d ∈M.

Proof (of Theorem 4). In the following, we denote presentations withA,B,C, . . .
and assume that A = (ΣA,ΓA) etc. It is well-known [8] that colimits, hence in
particular pushouts, lift from the signature category to the category of presen-
tations. For constructing a pushout

A
g //

f

��

C

f ′

��
B

g′ // D

we can take ΓD = f ′(ΓC)∪g′(ΓB) (actually, any logically equivalent presentation
will do).

Concerning pullbacks of morphisms f : A → B along morphisms m ∈
MPres,

A
f // B

N
g //

OO
n

OO

M
OO

m

OO

N ′

n′

BB

f ′

;;
h ??

we construct them in Sign and set

ΓN = n−1(Γ•A),

ensuring that n ∈MPres and henceMPres is stable under pullbacks. For well-
definedness of the pullback square, we need to show that g is a presentation
morphism, i.e. ΓN ⊆ g−1(Γ•M ). This is the same as n−1(Γ•A) ⊆ g−1(m−1(Γ•B)).

14



The latter term is n−1(f−1(Γ•B)), and hence the inclusion follows from f being
a presentation morphism. In order to show the pullback property, consider a
cocone (N ′, n′, f ′) as shown above. By the pullback property in Sign, there
exists a unique mediating signature morphism h : n′ → N making the triangles
commute. We need to show that it is a presentation morphism. Indeed, from
n′(ΓN ′) ⊆ Γ•A, we obtain n(h(ΓN ′)) ⊆ Γ•A and thus h(ΓN ′) ⊆ n−1(Γ•A) = ΓN .
Altogether, we have shown thatMPres is admissible.

Next, we need to show that pushouts in Pres are hereditary, assuming that
they are so in Sign. We use Thm. 5 and its notation. Assume that the bottom
face is a pushout (i.e. ΓD |=|h(ΓB) ∪ k(ΓC)) and the back faces are pullbacks
(in Pres), and b, c ∈MPres (hence also a ∈MPres).

For the “only if” direction, assume that also the top face is a pushout. Since
pushouts in Sign are hereditary, this means that the front faces are pullbacks
in Sign and d ∈ MSign. Now let us show that d ∈ MPres. Suppose that
ϕD′ ∈ d−1(Γ•D), i.e. d(ϕD′) ∈ Γ•D. W.l.o.g. let us assume that d(ϕD′) ∈ h(Γ•B)
(the case d(ϕ) ∈ k(Γ•C) is treated similarly). This means that there is ϕB ∈ Γ•B
with h(ϕB) = d(ϕD′). Since Sen preserves Sign-pullbacks along the MSign-
morphism d, there is ϕB′ ∈ Sen(ΣB′) with b(ϕB′) = ϕB and h′(ϕB′) = ϕD′ .

{∗}

ϕB

  

ϕD′

((
ϕB′

$$
Sen(ΣB′)

h′ //
��

b

��

Sen(ΣD′)��

d

��
Sen(ΣB)

h // Sen(ΣD)

Since b ∈ MPres, ϕB′ ∈ Γ•B′ . Hence h′(ϕB′) = ϕD′ ∈ Γ•D′ . Finally, the front
faces are pullbacks in Pres because they are so in Sign and b, c, d ∈MPres.

For the “if” direction, assume that the front faces are pullbacks in Pres and
d ∈ MPres. We need to show that the top face is a pushout in Pres. Since
pushouts in Sign are hereditary, it is a pushout in Sign. It remains to show
that ΓD′ |=|h′(ΓB′) ∪ k′(ΓC′). The “|=” direction follows from h′ and k′ being
presentation morphisms. Concerning the “=|” direction, let ϕD′ ∈ ΓD′ . Since d
is a presentation morphism, d(ϕD′) ∈ Γ•D. Since the bottom face is a pushout
in Pres, d(ϕD′) ∈ (h(ΓB) ∪ k(ΓC))•. Since b, c ∈ MPres, the latter term is
(h(b(ΓB′)) ∪ k(c(ΓC′)))

• = (d(h′(ΓB′)) ∪ d(k′(ΓC′)))
• = d(h′(ΓB′) ∪ k′(ΓC′))•.

Since d ∈MPres, we obtain ϕD′ ∈ (h′(ΓB′) ∪ k′(ΓC′))•.
Finally, we need to show that upper adjoints of inverse images exist in Pres,

assuming the same for Sign.

A
f // B

C
>>

m

>>

C ′
OO
f−1(n)

OO

g
//oo

ι
oo D

OO
n

OO

//
κ
// D′
``

∀f (m)

``

15



We first need to show that ∀f acts onMPres. Given m ∈MPres, we define

ΓD′ = ∀f (m)−1(Γ•B),

which turns ∀f (m) into a conservative presentation morphism.
Second, in order to show that f−1(n) v m iff n v ∀f (m) in Pres, we can

assume it for Sign. All we then need to show is that in case that both hand-
sides hold in Sign (implying that ι and κ exist as signature morphisms), then
ι is a conservative presentation morphism iff κ is. But ι and κ are always both
presentation morphisms because m and ∀f (m) are conservative, and ι and κ are
always both conservative because f−1(n) and n are. �

4. Nonconservative presentation morphisms

Our central result Theorem 4 assumes that we work with conservative pre-
sentation morphisms. However, in some applications of generic filtering, it is
useful to also filter out axioms, see section 1.3. So the question arises whether
Theorem 4 can be generalised to the nonconservative case: does the theorem
still hold if the admissible class of monos MPres is taken to be the class of
all (i.e. not necessarily conservative) presentation morphisms with underlying
signature morphism inMSign?

Unfortunately, the answer is no. Consider the institution with one signature
Σ (and the identity signature morphism), two Σ-sentences ϕ and ψ, and two
Σ-models M and N such that M |= ϕ, M 6|= ψ, N 6|= ϕ and N |= ψ. Clearly,
this is a MipMap institution. Nevertheless, the category Pres of presentation
morphisms is not MipMap whenMPres is defined as above. Namely, consider
the following pushout in Pres:

{ϕ} //

��

{ϕ,ψ}

��
{ϕ,ψ} // {ϕ,ψ}

Assume that this pushout were hereditary. This would mean that the upper

16



square is a pushout in the category of partial maps:

{ϕ} {ϕ}oooo // {ϕ,ψ}

{ϕ}
OO

OO

��

{ϕ,ψ}
OO

OO

�� ((

��

{ϕ,ψ} {ϕ,ψ}oooo //

))

��

{ϕ,ψ} {ϕ}
aa

aa

��

•
bb

bb

""
{ϕ}
ee

ee

// {ϕ,ψ}

Then for the cocone of partial maps shown in the lower right corner of the
diagram, a mediating partial map (shown as dashed morphisms) would exist.
Since composition of partial maps is given by pullback, the dotted arrows would
span two pullbacks. However, because pullbacks of inclusions are intersections,
the pullback object would need to be {ϕ} — a contradiction. �

5. Conclusion

We have given a semantics to generic specifications with filtering, combining
the pushouts-style semantics of generics in CASL with filtering (i.e. syntactic
removal of parts of a specification) in DOL. Heindel’s notion of MipMap cate-
gory can be extended to the notion of MipMap institution. We have show that
in a MipMap institution, the category of presentations and conservative pre-
sentation morphisms is MipMap as well. This provides a semantics of generic
specifications with filtering via pushouts of partial presentation morphisms.

The case of filtering along nonconservative presentation morphisms (that is,
deletion of axioms) is not covered by our theory. However, it could be handled
by constructing the pushout signature and presentation in the same way as in
the conservative case, but without guarantee that the pushout property holds.

Tool support for CASL and DOL is provided by the Heterogeneous Tool Set,
Hets [19]. Future work will extend this to GDOL.

References

[1] Astesiano, E., Bidoit, M., Krieg-Brückner, B., Kirchner, H., Mosses, P.D.,
Sannella, D., Tarlecki, A.: CASL - the Common Algebraic Specification
Language. Theoretical Computer Science 286, 153–196 (2002), http://
www.cofi.info

17



[2] Baumeister, H., Cerioli, M., Haxthausen, A., Mossakowski, T., Mosses,
P.D., Sannella, D., Tarlecki, A.: Casl semantics. In: Mosses, P.D. (ed.)
CASL Reference Manual, Lecture Notes in Computer Science, vol. 2960,
part ÏII. Springer Verlag, London (2004), http://www.springerlink.
com/(bt4qw245oavupgzdxw3zpuul)/app/home/contribution.
asp?referrer=parent&backto=searchcitationsresults,25,38;,
ÃŃdited by D. Sannella and A. Tarlecki

[3] Bidoit, M., Mosses, P.D. (eds.): CASL User Manual, Lecture Notes in
Computer Science, vol. 2900. Springer, Berlin, Heidelberg (2004)

[4] Cazanescu, V.E., Rosu, G.: Weak inclusion systems. Mathematical Struc-
tures in Computer Science 7(2), 195–206 (1997), https://doi.org/10.
1017/S0960129596002253

[5] Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Alge-
braic Graph Transformation. Monographs in Theoretical Computer Sci-
ence. An EATCS Series, Springer (2006), https://doi.org/10.1007/
3-540-31188-2

[6] Ehrig, H., Heckel, R., Korff, M., Löwe, M., Ribeiro, L., Wagner, A., Cor-
radini, A.: Algebraic approaches to graph transformation - part II: sin-
gle pushout approach and comparison with double pushout approach. In:
Rozenberg, G. (ed.) Handbook of Graph Grammars and Computing by
Graph Transformations, Volume 1: Foundations, pp. 247–312. World Sci-
entific (1997)

[7] Ehrig, H., Mahr, B.: Fundamentals of Algebraic Specification 1: Equa-
tions und Initial Semantics, EATCS Monographs on Theoretical Com-
puter Science, vol. 6. Springer (1985), https://doi.org/10.1007/
978-3-642-69962-7

[8] Goguen, J.A., Burstall, R.M.: Institutions: Abstract model theory for spec-
ification and programming. Journal of the Association for Computing Ma-
chinery 39, 95–146 (1992)

[9] Hayman, J., Heindel, T.: On pushouts of partial maps. In: Giese, H.,
König, B. (eds.) Graph Transformation - 7th International Conference,
ICGT 2014, Held as Part of STAF 2014, York, UK, July 22-24, 2014.
Proceedings. Lecture Notes in Computer Science, vol. 8571, pp. 177–191.
Springer (2014)

[10] Heindel, T.: Adhesivity with partial maps instead of spans. Fundam. In-
form. 118(1-2), 1–33 (2012), https://doi.org/10.3233/FI-2012-704

[11] Horrocks, I., Kutz, O., Sattler, U.: The Even More Irresistible SROIQ.
In: Proc. of the 10th Int. Conf. on Principles of Knowledge Representation
and Reasoning (KR2006). pp. 57–67. AAAI Press (June 2006)

18



[12] Kennaway, R.: Graph rewriting in some categories of partial morphisms.
In: Ehrig, H., Kreowski, H., Rozenberg, G. (eds.) Graph-Grammars and
Their Application to Computer Science, 4th International Workshop, Bre-
men, Germany, March 5-9, 1990, Proceedings. Lecture Notes in Computer
Science, vol. 532, pp. 490–504. Springer (1990), https://doi.org/10.
1007/BFb0017408

[13] Krieg-Brückner, B.: Generic Ontology Design Patterns: Qualitatively
Graded Configuration. In: Lehner, F., Fteimi, N. (eds.) KSEM 2016, The
9th International Conference on Knowledge Science, Engineering and Man-
agement. Lecture Notes in Artificial Intelligence, vol. 9983, pp. 580–595.
Springer International Publishing (2016)

[14] Krieg-Brückner, B., Mossakowski, T.: Safe Ontology Development with
Generic Ontology Design Patterns. In: 8th Workshop on Ontology Design
and Patterns - WOP2017 (to appear)

[15] Krieg-Brückner, B., Sannella, D.: Structuring specifications in-the-large
and in-the-small: Higher-order functions, dependent types and inheritance
in SPECTRAL. In: Abramsky, S., Maibaum, T.S.E. (eds.) TAPSOFT ’91:
Proceedings of the International Joint Conference on Theory and Practice
of Software Development Brighton, UK, April 8–12, 1991. pp. 313–336.
Springer Berlin Heidelberg, Berlin, Heidelberg (1991), http://dx.doi.
org/10.1007/3540539816\_74

[16] Lucanu, D., Li, Y.F., Dong, J.S.: Semantic Web Languages—Towards an
Institutional Perspective. In: Futatsugi, K., Jouannaud, J.P., Meseguer, J.
(eds.) Algebra, Meaning, and Computation, Essays Dedicated to Joseph A.
Goguen on the Occasion of His 65th Birthday. Lecture Notes in Computer
Science, vol. 4060, pp. 99–123. Springer (2006)

[17] Mossakowski, T., Codescu, M., Neuhaus, F., Kutz, O.: The Distributed
Ontology, Modeling and Specification Language – DOL. In: Koslow, A.,
Buchsbaum, A. (eds.) The Road to Universal Logic, vol. I, pp. 489–520.
Birkhäuser (2015)

[18] Mossakowski, T., Kutz, O., Codescu, M., Lange, C.: The distributed ontol-
ogy, modeling and specification language. In: Vescovo, C.D., Hahmann, T.,
Pearce, D., Walther, D. (eds.) WoMo 2013. CEUR-WS online proceedings,
vol. 1081 (2013)

[19] Mossakowski, T., Maeder, C., LÃĳttich, K.: The heterogeneous tool set,
hets. In: Grumberg, O., Huth, M. (eds.) TACAS. Lecture Notes in Com-
puter Science, vol. 4424, pp. 519–522. Springer (2007), http://dblp.
uni-trier.de/db/conf/tacas/tacas2007.html#MossakowskiML07

[20] Mosses, P.D. (ed.): CASL Reference Manual, Lecture Notes in Computer
Science, vol. 2960. Springer, Berlin, Heidelberg (2004)

19



[21] Object Management Group: The distributed ontology, modeling, and spec-
ification language (DOL) (2016), OMG standard available at omg.org/
spec/DOL. See also dol-omg.org

[22] Robinson, E., Rosolini, G.: Categories of partial maps. Inf. Comput. 79(2),
95–130 (1988), https://doi.org/10.1016/0890-5401(88)90034-X

20


